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Abstract 
Monitoring crop conditions and assessing nutrition requirements is fundamental for implementing sustainable agriculture. 
Crop models are powerful tools to predict plant status when proper input information are provided. Remote sensing tech-
niques are a unique way to acquire information on vegetation conditions over large areas to be used as forcing variables 
within simulation models. A field experiment was carried out in Lombardia, Northern Italy, in order to evaluate the poten-
tial of radiometric measurements for the prediction of rice nitrogen concentration for crop models forcing. The results indi-
cate that rice reflectance is significantly influenced by nitrogen supply at certain wavelengths. Regression analysis high-
lighted that the visible region of the spectrum is the most sensitive to plant nitrogen concentration when reflectance meas-
ures are combined into a spectral index. An automated procedure allowed the analysis of all the possible wavelength com-
binations to derive a Normalized Difference Index (NDI) correlated to Plant Nitrogen Concentration (PNC). The derived 
index, which appeared to be least influenced by plant biomass and Leaf Area Index (LAI), and the Simple Ratio (SR) in-
dex, widely used as an indicator of vegetation conditions, have been spatialized over the experimental field. The output 
maps have been discussed in terms of ability in describing the spatial variability of Aboveground Biomass (AGB) and 
PNC.  
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Riassunto 
Lo sviluppo e la valutazione dell’effetto di pratiche agricole sostenibili si basa anche sulla disponibilità di strumenti e me-
todi per il monitoraggio delle condizioni delle piante coltivate e del loro stato nutrizionale. In questo contesto, i modelli 
agronomici sono uno strumento fondamentale per valutare lo stato delle piante purchè i dati in ingresso agli stessi siano 
adeguati ed attendibili. Il telerilevamento rappresenta uno strumento fondamentale per ottenere dati sulla vegetazione a 
scala territoriale; a questa scala, infatti, i metodi di indagine tradizionali richiederebbero risorse, sia in termini di tempo 
che di denaro, tali da rendere qualsiasi applicazione inattuabile. Il telerilevamento permette di derivare alcuni parametri 
caratteristici della vegetazione (es. indice di area fogliare e concentrazione di azoto nella pianta) che possono essere uti-
lizzati nel forcing di modelli agronomici. In questo lavoro è stato condotto un esperimento di campo in Lombardia finaliz-
zato a valutare l’utilità delle misure radiometriche per la stima della concentrazione di azoto nella pianta di riso per il 
forcing di modelli agronomici. I risultati indicano, innanzitutto, che la riflettività delle piante di riso è influenzata dalla 
quantità di azoto fornita durante la crescita e che, in particolare, si possono evidenziare alcune lunghezze d’onda dello 
spettro elettromagnetico dove questo effetto è particolarmente evidente. In particolare, è stata analizzata la correlazione 
tra la concentrazione di azoto e un indice spettrale normalizzato (Normalized Difference Index, NDI) derivato combinando 
le misure di riflettività in due lunghezze d’onda dello spettro; una procedura automatica ha permesso di correlare l’indice 
derivato con tutte le possibili combinazioni di lunghezze d’onda per individuare la combinazione che restituisse la massima 
correlazione. L’indice NDI così ottenuto ha dimostrato di essere poco influenzato sia da variazioni di biomassa sia di area 
fogliare; questo indice e il Simple Ratio (SR) sono stati spazializzati tramite tecniche di kriging sull’estensione totale del 
campo sperimentale. Le mappe così ottenute vengono discusse in questo articolo soprattutto in termini di abilità nella de-
scrizione della variabilità in campo della biomassa e della concentrazione di azoto. 
 
Parole chiave: Oryza sativa L., proximal sensing, indice di vegetazione, analisi di regressione  
 
Introduction
Crop growth models simulate the time course of the main 
crop state variables (e.g. biomass, leaf area index, 
phenological stages) and of energy, carbon, water and 
nutrient fluxes at the crop/soil/atmosphere interfaces 
(Moulin et al., 1998). Simulation models have been de-
veloped and applied mainly for crop yield forecasting 

(food shortage early warning) (Supit et al.1994; Bas-
tiaanssen and Ali, 2003; Yun, 2003; Doraiswamy et al., 
2005) and crop conditions assessment during the grow-
ing season (water and nitrogen deficit estimation). How-
ever, accurate and reliable model simulations depend on 
the availability of data on those environmental and man-
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agement conditions that influence crop growth and de-
velopment. These datasets, often available at field scale, 
are hardly available through expensive ground surveys at 
the regional or country levels with a satisfying temporal 
frequency and accuracy. At these scales of analysis, in-
deed, satellite and airborne imageries constitute a valu-
able source of spatially distributed information on the 
surface (soil and vegetation) conditions. Remotely 
Sensed (RS) data were first directly correlated to crop 
yield and they were exploited for crop production fore-
casting (Groten, 1993; Hayes and Decker, 1996); this 
approach was justified by the link observed between 
plant radiometric behaviour and its development and ca-
pability of absorbing radiation. However, more physi-
cally based approaches use radiometric data for the esti-
mation of crop state variables such as Leaf Area Index 
(LAI [m2m-2]), the Fraction of Absorbed Photosyntheti-
cally Active Radiation (FAPAR) and canopy water con-
tent and structure (Moulin et al., 1998; Doraiswamy et 
al., 2005); these variables are directly responsible of the 
interaction between the vegetation and the radiation and 
therefore of the amount of energy measured by the sen-
sor (Asrar et al., 1989). Crop state variables can be de-
rived from RS data by inverting radiative transfer models 
(e.g. Verhoef and Bach, 2003) or by formalising (semi-) 
empirical regressive relationships (e.g. Cohen et al., 
2003). Hence, quantitative variables derived from RS 
data can be integrated in crop growth models with the 
objective of strengthening their performance especially 
for regional monitoring. 
The integration of RS data in crop growth models was 
first proposed by Wiegand et al. (1986) and several arti-
cles, published since then, describe the results of the in-
tegrated approach (Clevers et al., 1994; Field et al., 
1995; Clevers and Leeuwen, 1996; Clevers et al., 2002; 
Mo et al., 2005). The integration can be performed in 
four different ways (Maas, 1988a, 1988b; Delécolle et 
al., 1992, Moulin et al., 1998): 
1. Driving variables directly estimated from RS data; 
2. State variables (e.g. LAI) updated with estimates 

derived from RS data; 
3. Re-initialization of the model (i.e. adjustment of initial 

conditions to obtain simulations in agreement with RS-
derived data); 

4. Re-calibration (i.e. adjustment of the model’s 
parameters to obtain simulations in agreement with RS-
derived data). 

The use of quantitative estimates from RS data to update 
state variables (II) is also called model forcing; that is, 
the model is forced to use the variable’s value retrieved 
from the external source in order to provide the output 
simulation (Steven et al., 1983; Leblon et al., 1991; 
Clevers et al., 2002). Literature review shows that the 
attention has been mainly focused on model forcing with 
RS-derived estimates of the key variables FAPAR (Le-
blon et al., 1991; Clevers and van Leeuwen, 1996; 
Kiniry et al., 2004) and LAI (Doraiswamy et al., 2005). 
More recently, attention has been focused on Plant Ni-
trogen Concentration (PNC, hereafter always expressed 
as a percentage) assessment from RS data since Nitrogen 
(N) is a key factor in crop growth and often the major 
limiting nutrient in most agricultural soils. The direct 

correlation between PNC and crop production is ex-
plained by the increased photosynthetic rate (Radiation 
Use Efficiency, RUE) as an effect of increased N avail-
ability (Sinclair and Horie, 1989; Hosegawa and Horie, 
1996); therefore, a crop growth model should take into 
account RUE variability as a function of PNC. The 
WARM development group (Confalonieri et al., 2005) 
aims to integrate nitrogen dependent RUE for a better 
description of the processes governing rice plants 
growth. This article aims to describe a methodology for 
rice PNC estimation from RS data for a future integration 
in the WARM crop growth simulation model. In particu-
lar, the suitability of ground spectrometric data collected 
over an experimental field (proximal sensing technique) 
is evaluated as a basis for future applications at regional 
scale with airborne and satellite imageries. 

 

The relationship between reflectance and 
plant nitrogen concentration 
Remote sensing of agricultural resources is based on the 
measurement of the electromagnetic energy reflected or 
emitted from the Earth surface as a result of the energy-
matter interaction. RS data interpretation and processing 
aim to derive vegetation biophysical properties (e.g. LAI, 
PNC, AGB) from its spectral properties (i.e. spectral sig-
nature). 
Optical instruments, in particular, measure the amount of 
incoming solar radiation scattered back from the surface 
(i.e. reflectance factor) in the wavelength domain 350 nm 
to 2500 nm: Fig. 1 shows the reflectance factor as a func-
tion of the wavelength acquired over two vegetated sur-
faces (rice) with a field spectroradiometer (Field-
Spec_FR PRO, ASD Inc., Boulder, Colorado, USA). 
The canopy spectral signature, such as the one shown in 
Figure 1, is a function of the total leaf area, the geometry 
of the canopy (leaf angle distribution), the individual leaf 
optical properties (leaf spectral signature) and the back-
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Fig. 1 - The canopy spectral signatures in the visible and near-

infrared domains of the spectrum acquired over two experi-
mental plots of rice (cv Gladio) grown under different fertili-
zation treatments and characterised by different PNC and LAI.  

Fig. 1 - Firme spettrali nelle lunghezze d’onda dello spettro visibi-
le e vicino infrarosso acquisite per due parcelle del campo 
sperimentale (cv Gladio), dove il riso è cresciuto con diversi 
livelli di fertilizzazione e caratterizzate da diversi valori di 
LAI e concentrazione di azoto (PNC). 
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ground (either water or soil) reflectivity. Focusing on the 
visible (VIS, 350-700 nm) and near-infrared (NIR, 750-
1250 nm) regions, the typical pattern of vegetation opti-
cal properties can be highlighted. The amount of radia-
tion reflected from vegetation canopy in the VIS is quite 
low, due to the high absorption of radiation energy by the 
leaf pigments responsible of the photosynthetic process, 
primarily the chlorophylls, with a peak of reflectance in 
the green wavelengths (~550 nm) and a peak of absorp-
tion in the red wavelengths (~650 nm). In the NIR do-
main the reflectance factor is high due to both the high 
leaf reflectivity, caused by its internal cellular structure, 
and the enhancement of the reflectance caused by multi-
ple radiation scattering between the canopy leaf layers. 
Finally, reflectance in the longer wavelengths of the NIR 
domain is mainly influenced by leaf water absorption 
thus reducing the reflectance factor. Between the red and 
NIR wavelengths (~715 nm), canopy reflectance is asso-
ciated to the transition from chlorophyll absorption proc-
esses to leaf and within-leaf scattering; this position is 
identified by the wavelength of maximum slope of the 
reflectance spectrum between 650 nm and 800 nm 
(Munden et al., 1994) often referred to as red edge. As 
chlorophyll concentration increases the absorption fea-
ture in the red region broadens, and the red edge position 
shifts towards longer wavelengths.  
The potential of remotely sensed data relies on the 
above-described dependence of the vegetation spectral 
signature on biophysical properties. PNC can be esti-
mated from remotely sensed data thanks to its correlation 
with chlorophyll pigments (Yoder and Pettigrew-Crosby, 
1995) , which are responsible of the interaction with ra-
diation and, hence, of the vegetation optical properties. 
Changes in leaf chlorophyll concentration produce rather 
broad-band differences in leaf reflectance and transmit-
tance spectra. However, the transition from leaf spectra 
to canopy reflectance is complicated (Daughtry et al. 
2000). 
The reflectance measured in correspondence of two or 
more wavelengths can be combined in a spectral Vegeta-
tion Index (VI) that can synthesize multi-spectral infor-
mation and can be correlated to vegetation biophysical 
variables. Moreover, VIs can be specifically developed 
to enhance the sensitivity to the variable of interest (e.g. 
chlorophyll concentration) and to reduce undesired ef-
fects such as the influence of the background reflectance. 
The correlation between VIs and PNC can be exploited 
to derive a regressive model that allows the estimation of 
PNC from measured VIs (Stroppiana et al., 2005). The 
Normalized Difference Vegetation Index (NDVI) has 
been widely used for vegetation monitoring primarily for 
its simplicity. It is conceived as the normalized differ-
ence between the minimum peak of reflectance in the red 
wavelengths and the maximum reflectance in the NIR 
domain (NDVI=(ρNIR-ρRED)/(ρNIR+ρRED)): the higher the 
index value the better the vegetation conditions in terms 
of both biomass amount and vegetation health. A wide 
range of vegetation/spectral indices have been developed 
and applied for chlorophyll and nitrogen content estima-
tion (e.g. Daughtry et al., 2000; Haboudane et al., 2002), 
although the improvements brought by the increased 
complexity of the indices appear dependent on the condi-

tions of application. For instance, Daughtry et al. (2000) 
showed that the Modified Chlorophyll Absorption Re-
flectance Index (MCARI), specifically developed for 
chlorophyll estimation, is more influenced by canopy 
structure (i.e. LAI) than pigment concentration.  
 
Agronomic and spectrometric field data 
Ground data were collected in the framework of a field 
experiment carried out in 2004 in Opera, south of Mi-
lano, Italy. The experimental site was composed of 40 
7x5 m2 plots where Gladio (Indica type) and Volano (Ja-
ponica type) rice cultivars were sown on May 24 in a 
completely randomized block design with four replicates. 
Rice was grown under flooded conditions. Five different 
fertilization levels were applied for each cultivar by top-
dressing nitrogen fertilization (urea): a reference condi-
tion in which rice was let grow with no additional fertil-
izer (N0) and four additional levels, where N was applied 
differently at two times during the crop cycle (beginning 
of tillering, June 22, and panicle initiation, July 20) (N1: 
40+40 kg ha-1; N2: 80+80 kg ha-1; N3: 40+0 kg ha-1; N4: 
0+80 kg ha-1). Ground canopy reflectance data were ac-
quired with a FieldSpec_FR PRO (FS) spectroradiometer 
with a quasi-weekly time step (number of sampling 
dates, n=8) from beginning of tillering to the end of stem 
elongation phase corresponding to codes 25 and 34 of the 
BBCH scale of rice (Lancashire et al., 1991), respec-
tively. The FS instrument provides reflectance measure-
ments in the 350 to 2500 nm spectral range with a 4 nm 
spectral resolution and a 1 nm sampling step (hyperspec-
tral radiometer). Spectral measurements were collected 
above the canopy in correspondence of five positions 
within each plot (four at the corners and one at the cen-
tre) in order to cover the entire plot’s area. LAI was 
measured with both destructive and indirect methods 
(Jonckheere et al., 2004; Weiss et al., 2004). The direct 
destructive measurements were performed by sampling 
rice plants in the field and by measuring the leaf area in 
laboratory through digital photography. The indirect non 
destructive measurements were performed with a 
LAI2000 instrument (LI-COR, Inc., Nebraska, USA) 
along a transect composed of two above and four below 
canopy readings within each plot. LAI values were de-
rived by post processing the instrument output discarding 
the last ring readings (Stroppiana et al., 2006). Meas-
urements were extended until maximum LAI was 
reached (n=11).  
Eight sample plots (four replicates for fertilization levels 
N0 and N2 for the Gladio cv.) were monitored by meas-
uring AGB, PNC, and LAI (direct method) at the same 
time, when feasible, of the spectroradiometric measure-
ments (n=6). Optimal sample size was determined for 
each plot using the visual jackknife method (Confaloni-
eri, 2004: Confalonieri et al., 2006). AGB was deter-
mined by storing the samples in oven at 105 °C until 
constant weight and PNC by using an elementary ana-
lyzer (CE 1500 NA, Carlo Erba, Milano, Italy). In this 
study we present results from the analyses of the nitrogen 
concentration and spectroradiometric ground measure-
ments in the eight sample plots. Hence, results are lim-
ited to the Gladio cv. and the two fertilization levels N0 
and N2. 
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Methodology 
In order to investigate the relationship between PNC and 
canopy reflectance, the mean spectral signature derived 
from the five measurements acquired over each plot has 
been correlated to the average PNC measured for the 
sampled plants for the eight plots monitored. A total of 
48 couples of values (8 plots x 6 dates) were available 
for the regression analysis. Univariate ordinary least 
square regression analysis was first applied to investigate 
the correlation between the canopy reflectance (ρλi) 
measured at each wavelength (λi) of the FS instrument 
and PNC; the objective is to highlight those spectral re-
gions sensitive to PNC by exploiting the hyperspectral 
property of the field sensor.  
Since vegetation/spectral indices are commonly used for 
vegetation monitoring, we also quantified the correlation 
between a Normalized Difference Index (NDI) (Equation 
1) and PNC. 
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Rather than selecting an a-priori couple of wavelengths 
(λi, λj) to be combined in the spectral index, by exploit-
ing again the hyperspectral characteristics of the radio-
metric dataset, all the possible combinations of spectral 
bands (λi, λj) were analysed to identify the combination 
that provides the highest correlation with PNC. The rela-
tionship between vegetation/spectral indices and bio-
physical variables is generally of a logarithmic type de-
scribing a typical VIs saturation effect in the presence of 
dense canopy or high pigment concentration (Carlson 
and Ripley, 1997; Hanna et al., 1999; Boschetti et al., 
2006); all the results presented in the following sections 
refer to a logarithmic relationship. The index derived 
with the selected spectral bands is the optimal index for 
PNC estimation (NDIopt) among those computable with 
any other combination of bands. The index of the form 
shown in Equation 1 coincides with the NDVI when the 
ρλj, ρλi are selected in the red and near infrared domains 
of the spectrum, respectively.  
The correlation between spectrometric data and bio-
physical variables were similarly performed for the LAI 
and AGB datasets. These analyses aimed to verify 
whether the regions of the spectrum and the indices suit-
able for LAI and AGB estimation are significantly dif-
ferent with respect to those selected for PNC assessment. 
Indeed, an index optimal for PNC estimation should be 
least influenced by the variability of factors other than 
the PNC. 
Finally, NDIopt and the Simple Ratio (SR=ρλj/ρλi; where 
λj=800 nm and λi=670 nm) indices were mapped over 
the experimental site using spatialisation algorithms 
(kriging) implemented in the Surfer Version 8.0 (Golden 
Software, Inc.) software. The SR index has been widely 
used as an indicator of vegetation vigour (i.e. biomass) 
(Jordan, 1969) and it has been preferred to the NDVI, 
which showed significant saturation behaviour (Carlson 
and Ripley, 1997). In fact, the NDVI values measured at 
the experimental site reached the top of the index range 

(NDVI>0.9) even at the beginning of the experimental 
measurements.  
 
Results and discussion 
Figure 2 shows the results of the regression analysis: the 
Pearson coefficient of linear correlation (r) is plotted as a 
function of the wavelength to quantify the relationship 
between reflectance and PNC, LAI and AGB and to 
highlight the direction of this relationship. The graph was 
limited to the 350-950 nm spectral range due to the low 
S/N ratio that characterises longer wavelengths in the 
short-wave infrared domain.  
The reflectance measured by the instrument is greatly 
influenced by the canopy structural parameters (LAI and 
AGB) in both the visible (VIS) and near-infrared (NIR) 
spectral domains (r2

PNC < 0.30; r2
LAI < 0.74; r2

AGB < 
0.84). Nevertheless, the correlation with PNC in the VIS 
is higher compared to values estimated in the NIR, ac-
cording to previous findings which showed that light ab-
sorption by chlorophyll dominates the leaf spectral prop-
erties in the blue (~450 nm) and red (~670 nm) wave-
length regions (Chappelle et al., 1992; Daughtry et al., 
2000). This effect is significantly reduced at the canopy 
level where, besides leaf properties, structural parameters 
play a key role in the interaction with incoming solar ra-
diation especially in the NIR (>750 nm) region where 
leaf reflectance is not related to leaf chlorophyll but to 
leaf structure (Knipling, 1970). For example, Daughtry et 
al. (2000) quantified that as much as 87.7% of the varia-
tion in canopy reflectance at 801 nm is due to variations 
in LAI. 
Moreover, the two regions of the spectrum show oppo-
site behaviours (Figure 2): the NIR wavelengths are in-
versely related to PNC and positively related to LAI and 
AGB, the opposite occurs in the VIS. 
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Fig. 2 - The Pearson coefficient of linear correlation (r) as a 
function of the wavelength for rice PNC, LAI and AGB 
(n=48). The biophysical variable were transformed in loga-
rithmic scale for the regression analysis. 

Fig. 2 - Andamento del coefficiente di correlazione lineare di 
Pearson (r) in funzione della lunghezza d’onda per i pa-
rametri concentrazione di azoto, indice di area fogliare e 
biomassa (n=48). Le variabili biofisiche sono state tra-
sformate secondo la funzione logaritmica.  
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Figure 2 also highlights the position of the Red Edge 
wavelength (~725 nm) where r2 is equal to 0 for all vari-
ables. No spectral region can be identified where reflec-
tance is correlated to N concentration better than to LAI 
or AGB. The results presented here show that it is clearly 
necessary to reduce the influence of these parameters be-
fore attempting to estimate rice PNC at canopy level.  
Daughtry et al. (2000) found that attempts to assess plant 
N status based on canopy reflectance in a single band of-
ten will be confounded by the variability in background 
reflectance and/or LAI. On the contrary, ratios or more 
complex wavebands combinations (vegetation/spectral 
indices) greatly improve the low performance of a single 
wavelength approach, shown by Figure 2, by minimizing 
the influence of extraneous factors and maximizing the 
sensitivity to the variable of interest.  
Figure 3.a shows the correlation between rice PNC and 
the NDI index for each couple of wavelengths of the 
VIS-NIR domain.  

As already pointed out above, the VIS is the most suited 
region of the spectrum for PNC estimation and the use of 
a combination of bands improved the correlation with 
measured PNC. The highest correlation (r2=0.65) is ob-
tained from the combination of the reflectance factors in 
two bands in the visible region: λi=503 nm and λj=483 
nm. The correlation between the index obtained with 
these two wavelengths (NDIopt) and PNC is shown in 
Figure 4: an inverse logarithmic relationship exists be-
tween the two variables. 
The results of the same type of regression analysis per-
formed with the LAI and AGB datasets are shown in 
Figures 3.b and 3.c, respectively. The highest r2 values 
for these two variables are obtained when the bands 
combined into the NDI are chosen in the NIR region of 
the spectrum (λ>700 nm). In particular, in the case of 
AGB the coefficient of determination reaches the highest 
values (r2 > 0.9) thus confirming that the NDVI-type in-
dices are highly correlated to the amount of biomass. On 
the contrary, the lowest correlation is achieved when re-
flectance measured in the VIS is exploited to derive the 
index. If the same wavelength combination (λi=503 
nm, λj=483 nm) found to be the most suited for PNC es-
timation is used in the NDI, the r2 computed for LAI and 
AGB is 0.31 and 0.27, respectively. In a multivariate re-
gression analysis with NDIopt as dependent variable and 
logarithmic transformed PNC, LAI and AGB as inde-
pendent variables, only the regression coefficient relative 
to PNC is statistically significant (***P<0.001). This re-
sult further confirms that the index is least influenced by 
LAI and AGB.  
Since the major advantage of remotely sensed data is the 
ability in providing spatially distributed information, we 
spatialized the NDIopt and the SR indices. We pointed out 
that different indices can highlight different properties of 
the vegetated surfaces hence the maps, derived from the 
spatialization over the experimental field, are expected to 
highlight independent patterns related to either LAI/AGB 

  

(r2=0.0)  (r2=1.0) 

a) b) c) 

 
Fig. 3 - The coefficient of determination (r2) computed between PNC (panel a), LAI (panel b) and AGB (panel c) measurements and the 

NDI (n=48) obtained with all the possible combination of bands in the range of acquisition of the FS instrument. The figure shows 
only the 350-1250 nm VIS-NIR range. 

Fig. 3 - Valori del coefficiente di determinazione (r2) calcolato per regressione tra l’indice NDI, ottenuto con tutte le possibili combina-
zioni di lunghezze d’onda nel range dello strumento FS, e la concentrazione di azoto (PNC) (a), il LAI (b) e la biomassa (AGB)(c) 
(n=48). La figura presenta solo i risultati nel range del visibile e dell’infrarosso vicino (350-1250 nm).    
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Fig. 4 - The correlation between NDIopt and PNC. 
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or PNC. Figure 5 shows the SR and NDIopt maps derived 
over the field for four dates during the crop cycle. 
Note that, besides the two fertilization levels monitored 
(N0 and N2), there are three more levels within the ex-
perimental field that contribute to the spatial pattern 
highlighted in the figure. Both the VIs in the figure show 
an increasing level of spatial variability due to different 
growing conditions of the rice plants. The lowest vari-
ability in the SR values in the field is on June 25, a 
month after sowing and 5 days after the first fertilization, 
which occurred on June 22. On the same date, the NDIopt 
values show a higher rate of variability compared to SR 
probably due to more variable nitrogen concentration as 
a consequence of the first fertilization and of different 
initial soil conditions. The homogeneity shown at the be-
ginning of the crop cycle is progressively lost and it dras-
tically decreases after the second fertilization supplied on 
July 20. The figure clearly shows the effect of the second 
fertilization on both the indices. The highest values of 
biomass (high SR, orange to red colours) and nitrogen 
concentration (low NDIopt, orange and red colours) in 
most cases occur in the most fertilized plots of the sec-
ond treatment (dark grey filled cells). In the case of SR, 
this correspondence is already evident in the results de-
rived for July 28 (8 days after the second fertilization) 
but it becomes clearer for August 16 when almost all the 
plots show an increase of the SR values; this increase is 
likely due to the increased AGB. On the contrary, the 
NDIopt map on July 28 shows a good correspondence be-
tween the highest levels of fertilization and the highest 
levels of nitrogen (lowest NDIopt) but on August 16 the N 
levels are generally decreased probably due to the N di-
lution by the rice plants. Indeed AGB is characterised by 
a monotonic increase with time and PNC by a curve with 
maximum peaks after the fertilization treatments. 
Figure 6 shows the mean NDIopt (panel a) and SR (panel 
b) for the four fertilization treatments of the experimental 
field. Note that NDIopt and PNC are inversely related, as 
shown by Figure 4, and therefore the lowest index values 
identify the highest N concentration in rice plants. Before 
the second fertilization, the values of both the indices do 
not differentiate significantly among treatments. No sig-
nificant statistical differences have been found among 
treatments for the field AGB and PNC measurements. 
However, the greater proximity of the mean NDIopt 
curves suggests that, in terms of PNC, plots’ conditions 
might be more homogeneous. Apparently, the first fer-
tilization treatment had a greater effect on plants AGB, 
rather than PNC, especially in the case of the highest fer-
tilized plots (triangular markers in Figure 6.b). After the 
second fertilization (highlighted in the figure by a black 
arrow), NDIopt decreases and SR increases significantly 
according to measurements acquired on July, 28; it is 
probable that the field campaign carried out on July 22 
was too close to the treatment to highlight an effect on 
plants’ conditions. The last campaign (August 16) clearly 
shows how the plots cluster in two groups based on 
whether or not they were fertilized a second time. 
 
 
 

 
 
Fig. 5 - SR and NDIopt maps over the experimental field. The 

colour scale of the NDIopt index has been inverted to better 
represent its inverse proportionality with PNC (see Fig. 4). 
The first column shows the amount of fertilizer supplied at 
the first (top) and second (bottom) fertilization treatments as 
filled grey levels (white, light grey and dark grey indicate 0 
kg ha-1, 40 kg ha-1 and 80 kg ha-1, respectively); the total 
amount supplied to each plot is also shown by the text label 
within each cell ([kg ha-1]). 

Fig. 5 - Mappe degli indici SR e NDIopt per il campo sperimen-
tale. La scala di colori dell’indice NDIopt è stata invertita 
per meglio rappresentare la sua relazione di inversa pro-
porzionalità rispetto a PNC (vedi Figura 4). La prima co-
lonna mostra la quantità di azoto fornita nella prima (in al-
to) e nella seconda (in basso) fertlilizzazione. I diversi livelli 
di fertlizzazione sono rappresentati da diversi toni di grigio 
(bianco, grigio chiaro e grigio scuro indicano, rispettiva-
mente, 0 kg ha-1, 40 kg ha-1 and 80 kg ha-1). La quantità to-
tale di azoto fornita ad ogni parcella è invece indicata 
dall’etichetta all’interno di ogni cella.   
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Conclusions 
Remote sensing techniques are a unique tool for frequent 
and non destructive vegetation conditions assessment 
over large areas, as required by agriculture monitoring. 
The radiometric properties of the vegetated surfaces are 
correlated to biophysical variables among which Plant 
Nitrogen Concentration (PNC), Leaf Area Index (LAI) 
and Aboveground Biomass (AGB), that constitute key 
input data for crop growth models. This study investi-
gates the ability of a single band and of band combina-
tions (Normalized Difference Index, NDI) to PNC as-
sessment by univariate regression analysis of field meas-
urements (laboratory plant nitrogen estimates and spec-
trometric data acquired with proximal sensing tech-
niques). The analysis of the correlation between single 
band reflectance and N concentration confirms previous 
findings and showed a weak prediction ability over the 
visible and near-infrared spectrum range. Besides the 
low coefficient of determination, the reflectance is also 
highly affected by canopy biomass and leaf area. 
In the case of an NDI index, all the possible band combi-
nations have been screened with the objective of seeking 
the couple of bands that combined into the index provide 
the highest correlation with PNC measurements. This 
approach exploited the hyperspectral property of the 
spectroradiometer used for field data acquisition. The 
two wavelengths found to provide the highest correlation 
(r2=0.65) between the index and PNC belong to the visi-
ble blue/green region of the electromagnetic spectrum: 
λi=503 nm and λj=483 nm. The relationship between the 
index and PNC can be inverted to derive an estimate of 
PNC from data acquired with proximal and remote sens-
ing techniques thus providing input data for a regional 
application of crop growth models such as WARM.   
The same procedure has been applied to the LAI and 
AGB field datasets; the results showed that the reflec-
tance measured in the NIR rather than VIS region of the 
electromagnetic spectrum can be correlated to these two 
variables. These results suggest that the index derived for 
PNC assessment (NDIopt) is least influenced by LAI and 
AGB. 

The NDIopt and a Simple Ratio (SR) index have been 
spatialized over the experimental field to picture the 
variability of N concentration and biomass to which the 
indices are, respectively, correlated. The output maps 
confirm previous results: indeed, they show different pat-
terns due to a different spatial variability of the biophysi-
cal variables. These maps, obtained with proximal sens-
ing techniques, highlight the potential of radiometric 
(remotely and proximal sensed) data for regional vegeta-
tion monitoring. Based on these results derived with a 
hyperspectral dataset, satellite data (either simulated or 
acquired) will be used to further investigate the relation-
ship with PNC for future applications that exploit the 
commercial available datasets.   
Moreover, the relationship between nitrogen and chloro-
phyll concentration will be further analysed. Chlorophyll 
is the actual responsible of the interaction between can-
opy and solar radiation. Although it is well know that a 
nitrogen deficiency determines a reduction of chloro-
phyll pigments, a more detailed investigation of the rela-
tionship between these two variables and the possibility 
of using this kind of information to force models would 
greatly improve models performance, especially for large 
scale simulations. 
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