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Abstract 
Calibration is the process of adjusting parameters values to obtain a good fit between model outputs and observations. The 
objective is to later apply the model to conditions similar to those characterizing the data used for the calibration. Even if 
calibration is a standard in model application, it is a high risk procedure. The purpose of calibration is to determine the val-
ues of unknown variables or parameters on the basis of their effects; the underlying risk of calibration is to degrading a 
mechanistic model to a totally empirical model very similar to a regression model, but without the statistical support to the 
conclusion drawing from the latter type of model. A reliable calibration process includes four steps. Step 1 is to define a 
criterion to evaluate the performance of a model in terms of an objective function; step 2 is to select the variables (or pa-
rameters) that will be calibrated; step 3 is to select an appropriate algorithm for minimisation (or maximisation) of the ob-
jective function; step 4 is the test of calibration results against new data sets. This paper focuses on step 3, and in particular 
on discussing, testing, and comparing two optimization algorithms derived from the simplex method: a bounded version of 
the Downhill Simplex (BS) and a modified version of the Evolutionary Shuffled Simplex (ESS). The two algorithms, se-
lected because they do not use derivatives (crop models are strongly not-linear), were tested using two standard benchmark 
functions for optimization methods: the Rosenbrock and the Rastrigin functions. 
Results show that, even if BS requires few model evaluations, in some cases it is not able to find a global minimum in a 
multidimensional complex hyperspace. In this case, a more performing algorithm (such as ESS) should be used. 
The two algorithms have been introduced in the WARM simulation environment, allowing WARM to run automatic cali-
brations using both methods. Some results are presented. 
 
Keywords: Automatic calibration, Rastrigin, Rosenbrock, Downhill simplex, Evolutionary Shuffled Simplex. 
 
Riassunto 
La calibrazione è il processo attraverso il quale i valori di parametri vengono modificati al fine di ottenere un buon accor-
do tra risultati di un modello e osservazioni. L’obiettivo è di applicare in seguito il modello a condizioni simili a quelle per 
le quali è stato calibrato. Anche se la calibrazione è una pratica normale nella modellistica di simulazione, è una procedu-
ra altamente rischiosa. Il suo scopo, infatti, è di determinare il valore di grandezze incognite sulla base dei loro effetti; il 
rischio è di degradare un modello meccanicistico ad un modello totalmente empirico, ma senza il supporto statistico che 
caratterizza i modelli empirici. Una calibrazione affidabile include quattro fasi. La prima consiste nel definire un criterio 
per valutare le prestazioni di un modello, in altre parole identificare un’adeguata funzione obiettivo. La seconda prevede 
la selezione dei parametri da calibrare. La terza fase consiste nell’individuazione di un algoritmo di ottimizzazione appro-
priato per la minimizzazione (o la massimizzazione) della funzione obiettivo. La quarta fase è la verifica dei risultati della 
calibrazione utilizzando nuovi dati sperimentali Questo articolo è focalizzato sulla terza fase, in particolare sulla discus-
sione, verifica e confronto di due algoritmi di ottimizzazione derivati dal metodo del simplesso: una versione del Downhill 
Simplex con variazione delimitata dei parametri (BS) ed una versione modificata dell’Evolutionary Shuffled Simplex (ESS). 
I due algoritmi, selezionati in quanto non fanno uso di derivate (i modelli biofisici sono sistemi fortemente non lineari), so-
no stati esaminati utilizzando due funzioni particolarmente adatte per valutare metodi di ottimizzazione: la funzione di Ro-
senbrock e quella di Rastrigin. I risultati mostrano che, nonostante BS richieda poche iterazioni, in alcuni casi non è in 
grado di trovare un minimo globale in un iperspazio multidimensionale complesso; in questi casi, è necessario utilizzare 
algoritmi più potenti, come ad esempio ESS. 
I due algoritmi sono stati inseriti nell’ambiente di simulazione di WARM, rendendo il modello in grado di effettuare cali-
brazioni automatiche utilizzando entrambi i metodi. Si forniscono alcuni risultati preliminari. 
 
Parole chiave: Calibrazione automatica, Rastrigin, Rosenbrock, Downhill simplex, Evolutionary Shuffled Simplex. 
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Introduction 
Calibration is the process which consists in adapting a 
model to one or more sets of measured data to succes-
sively allow its application to similar conditions (Beck, 
1987). Even if calibration is a standard in model applica-
tion, it is a high risk procedure. The purpose of calibra-
tion is to determine the values of unknown variables on 
the basis of their effects. This leads to the risk of reduc-
ing a biophysical model to a black box. In fact, when a 
variable is used for calibration, it is possible to include in 
its value errors coming from other sectors of the model-
ling process (e.g. errors in the estimation of other vari-
ables, errors in conceptual representation of the system, 
effect of correlation with other variables).This reduces 
the procedure of calibration to a fitting procedure, de-
grading a mechanistic model to a totally empirical one, 
very similar to a regression model but without its statisti-
cal support. This risk, present also when calibration is 
carried out on only one variable, increases exponentially 
with the number of variables under calibration. In spite 
of this, it is absolutely unusual that a biophysical model 
performs adequately without calibration, so there is a 
clear need to define rigorous, low-risk criteria allowing 
to perform calibrations and avoiding the typical problems 
which arise from an extensive use of this procedure. 
The purpose of a calibrations is to improve the perform-
ance of a model against a set of measured data, thus the 
first element needed for calibration is to define criteria to 
evaluate the performance of a model. The literature about 
the model evaluation is wide and dozens of performance 
indices have been proposed (e.g. Loague and Green 
1991; Martorana and Bellocchi, 1999; Tedeschi, 2005). 
Moreover, model evaluations typically cannot be done 
using only one of these indices (e.g. Smith et al., 1997). 
The difficulty to evaluate simultaneously different indi-
ces is usually handled using some aggregation criteria 
ranging from simple weighted sum to the more recent 
proposals of fuzzy logic application (Bellocchi et al, 
2002). The problem of the multiplicity of indices is 
raised by the existence of several output variables of in-
terest, which are characteristic of a biophysical model, 
e.g.: biomass, yield, leaf area index, drainage and leach-
ing, evolution of organic matter in the soil. All of these 
variables are frequently simulated by cropping system 
models, and it is not reasonable to have excellent agree-
ment between observed and simulated values only in one 
of these tightly correlated outputs without accounting for 
the others. In this case, in fact, no conclusions about the 
real ability of the model in “understanding” the simu-
lated system should be derived. Another common mis-
take in calibrations is to calibrate parameters “far” from 
the output: often the calibration is carried out on outputs 
that are not directly determined by the variable under 
calibration because of several interferences due to other 
processes. In this case, the calibrated variable tends to 
include errors in the simulation of the other processes 
involved: the result is a loss of the biophysical meaning 
of the calibrated variable. Also in this case, usually, the 
calibration leads to instability of the model, when applied 
on new datasets. The way to overcome this problem is to 
calibrate single, specific sub-models. This is not always 

possible because of the unavailability of data for process-
specific calibrations and of the computational structure 
of the model that usually does not allow process-specific 
inputs and outputs. 
Synthesizing the previous considerations, an effective 
calibration is possible only with modular, component-
based models (Donatelli et al., 2004), which allow insu-
lating the various processes involved in the full system 
model and, therefore, calibrating and testing each single 
process. General criteria for effective calibrations are the 
following: 
1. Data from the same time scale of the scale of simula-

tion should be used. 
2. Measured data representative of the process under 

calibration should be selected. Parameters or variables 
involved with the simulation of a process should be 
calibrated independently from the others. 

3. Only unknown variables or parameters should be cali-
brated. In cases where measured data are available, 
they should be used or calibrations should be carried 
out only within the range of the measurement error. 

4. The number of parameters or variables to be calibrated 
should be kept to the minimum: it is better to measure 
or use reference data than simultaneously calibrate sev-
eral parameters. 

5. The calibration should be carried out only within the 
physical domain of each parameter, and all the avail-
able information should be used to reduce the physical 
domain itself. Unrealistic or unusual values of parame-
ters or variables often indicate that the calibration is af-
fected by errors in the value of other parameters or 
variables. Of course, the problem is that the only way 
to be sure of the physical domain is to measure the un-
known variable itself! 

6. Calibrations should be tested against new datasets. 
7. An objective function evaluated on more than one de-

pendent variable has to be used. This ensures stability 
and coherence in simulation. 

From the theoretical point of view, the only calibration 
that is absolutely out of criticism is the so called “model 
inversion”, where a model is used to obtain an unknown 
physical value exactly as a laboratory analysis (Romano 
and Santini, 2002). The quality criteria to obtain the 
value of a physical parameter from a model inversion are 
the followings. (i) Uniqueness: there is only one mini-
mum (or local minima are clearly different from the 
global one). (ii) Identifiability: different sets of parame-
ters give a large difference in the merit function value; 
when this requirement is not met (non identifiable pa-
rameters), a change in one parameter can be compen-
sated by a change in another one. Non identifiable pa-
rameter sets frequently are a consequence of high corre-
lation between parameters and overparameterization. (iii) 
Stability: small changes in measured data do not change 
significantly the parameter values. 
When a model inversion has an unstable and non unique 
solution, it is referred of as a result of an ill -posed prob-
lem. An ill-posed problem can become well-posed with 
more and better data or using tighter constraints to pa-
rameters. 
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An overview of the calibration algorithms 
Optimization is one of the growing fields in modern sci-
ence, because of its application to several scientific and 
real problems. Two ISI (Institute for Scientific Informa-
tion) journals are entirely dedicated to optimization tech-
niques and many programs (from the Microsoft Excel 
solver to highly parallel codes for Cray X1, 
http://www.cray.com) and types of algorithms have been 
developed in the last years. Surprisingly, it seems impos-
sible to find in the literature applications of these tech-
niques to cropping system or biophysical models, even if 
in this field calibration of parameters is a common prac-
tise. There are more applications in hydrology, to con-
ceptual catchment models (e.g. Brazil, 1988; Duan et al., 
1992; Gan and Biftu, 1996). A reason for this difference 
could be found in the lower level reached by computer 
science and software in the agronomic and agrometeo-
rological disciplines. 
It is possible to distinguish two major groups of optimi-
zation algorithms, according to the fact that they use de-
rivatives or not. The advantages of the former group are 
the computationally simple estimation of parameters un-
certainty (asymptotically correct) and the fact that their 
behaviour is well known. Their main drawback is that if 
analytical partial derivatives are not available for all fit-
ted parameters, the computation must be carried numeri-
cally. Direct consequences of this drawback are that nu-
merical computation may be imprecise and that the proc-
ess is strongly inefficient from the point of view of com-
putational time because derivatives require at least one 
more model evaluation for each measured point. On the 
contrary, algorithms not based on derivatives are useful 
with complex models, very easy to understand and often 
decidedly powerful (Smyth, 2002).  
An overview of the main optimization algorithms is 
given in Figure 1. 
Apart from automatic optimization algorithms, it is pos-
sible to run calibrations using the grid search criterion. 

This method consists in five steps: (i) select the parame-
ters to calibrate, (ii) set a domain for each parameter, (iii) 
divide the domain in user defined parts, (iv) evaluate the 
objective function at any node of the grid, (v) select as 
calibration result the node corresponding to the best 
value of the objective function. Grid search is undoubt-
edly simple and reliable but very time consuming and not 
practical in most cases, especially for ill-posed problems. 
For sure, this method is useful for the exploration of the 
space determined by the parameters to calibrate. 
Although the available powerful technology mentioned 
above to perform automatic calibrations, trial and error is 
still the method used in most of the calibration and prac-
tically the only one used in cropping system model cali-
bration. The only advantages of this method are that it is 
easy to perform and no specific software is required. The 
drawbacks of trial and error are that a lot of time is re-
quired and that it is one of the most risky methods: the 
model user changes many parameters, often simultane-
ously, without a strategy, hoping that a long series of 
small changes allows obtaining good and reliable simula-
tions. In many cases, final results are not satisfactory: 
unrealistic combinations of parameters are reached in 
some cases; in others, observations and simulated results 
do not reach good agreement. The reason of many of 
these failures is that biophysical models are strongly 
non-linear. If someone is able to adjust a model “by 
hand”, probably his expertise is better than the model it-
self. 
Although methods suitable to calibrate simultaneously 
up to 1000 variables or parameters have been developed 
(e.g. genetic algorithms [Holland, 1975], simulated an-
nealing [Kirkpatrick et al., 1983], tabu search [Glover, 
1986], ant colony [Dorigo, 1992]), a general recommen-
dation for cropping system models is to automatically 
calibrate no more than three or four parameters simulta-
neously. 
Among the different optimization methods which do not 

use derivatives, the down-
hill simplex (Nelder and 
Mead, 1965) is one of the 
most used when the figure 
of merit is “get something 
working quickly” (Press et 
al., 1992). The only real 
weak point of the downhill 
simplex is that it is possi-
ble that it falls in a local 
minimum of the objective 
function in the hyperspace 
determined by the parame-
ters or variables to cali-
brate. For this reason, evo-
lutions of the simplex have 
been proposed, e.g. the 
hybrid between simplex 
and simulated annealing 
from Kvasnička and Po-
spìchal (1997) and the par-
allel simplex from Matsu-
moto et al. (2002). 
In this paper, a simple 

 
 Optimization algorithms

Derivative based Do not uses derivatives
Levenberg- -Marquardt simplex

Random search

Genetic algorithms

Multistart simplex
Genetic simplex

Monte Carlo
Adaptive random search

Controlled random

Coniugate gradients

Simulated annealing
Tabu search
Ant colony

parallel simplex

Powell method
Rosenbrock method

 
 
FIG. 1 - Scheme showing the main optimization algorithms. 
FIG. 1 - Schema rappresentante i principali algoritmi di ottimizzazione. 
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modification of the downhill simplex (Nelder and Mead, 
1965) and the evolutionary shuffled simplex (Duan et al., 
1992) are briefly described, tested, and compared using 
benchmark functions. The way they have been adapted to 
work on cropping system simulation models and how 
they have been integrated in the WARM modelling sys-
tem (Confalonieri et al., 2006a) are also presented, to-
gether with some examples. 
 
Materials and methods 
The downhill simplex algorithm 
The downhill simplex method (Nelder and Mead, 1965) 
is based on a geometrical concept, called simplex, con-
sisting of N + 1 vertices (interconnected by their line 
segments and polygon faces) in a N-dimensional space. 
In a 2-dimensional space, the simplex is a triangle; in a 
3-dimensional one is a tetrahedron. The simplex moves 
through a multidimensional space according to three ba-
sic rules: reflection, contraction, and expansion. Al-
though this geometrical figure is used also in the simplex 
method of linear programming, the simplex optimization 
method has nothing to do with it. 
The first step for running this procedure is to define a 
starting guess, that is to generate an initial simplex by 
defining the position of the N + 1 vertices in the N-
dimensional space. This can be done by defining a point 
P0 in the N-dimensional space and deriving the other N 
points as Pi = P0 + λei; where ei’s are N-unit vectors and 
λ is a constant consistent with the problem characteristic 
length scale (Press et al., 1992). An evaluation of the ob-
jective function is carried out for each vertex. In the case 
of crop models, each vertex corresponds to a combina-
tion of crop parameter values and therefore evaluating an 
objective function could be represented by the computa-
tion of RMSE (root mean square error) between ob-
served data and simulation results from that combination 
of parameter values. With respect to other gradient-based 
methods, the simplex has also a possibility of exploring 
the space independently from the gradient because of its 
peculiar amoeboid behaviour. After each step, the 
evaluations of the objective function are again carried 
out and the next step is performed according to their re-
sults. The algorithm moves in an N-dimensional space 
according to the gradient of the objective function, until 
a minimum (usually the absolute one) is reached. Reflec-
tion and expansion allow the simplex “passing over” lo-
cal minima, increasing the possibility to reach the global 
one. 
The simplex stops moving when the objective function 
evaluated for one of the vertices is within a tolerance 
range (used defined) with respect to the other vertex. 
 
The evolutionary shuffled simplex algorithm 
The only real limit of the simplex is that, when several 
local minima characterize the space defined by the pa-
rameters (or variables to calibrate), there is the risk that it 
falls in one of them, avoiding reaching the absolute 
minimum. For this reason, it is an accepted rule to repeat 
the procedure starting from different initial guesses and 
verifying the convergence in the same region of the N-
dimensional space. The evolutionary shuffled simplex 

(ESS) (Duan et al., 1992) is a powerful strategy to im-
prove this approach. 
ESS consists in (i) running simultaneously a certain 
number of simplexes, randomizing the initial guesses; 
(ii) discarding a certain percentage of simplexes, with a 
probability inversely proportional to the value of the ob-
jective function; (iii) introduce a “mutation”, that is, 
when a simplex tries to move a vertex outside the al-
lowed domain, the vertex is substituted with a new one 
randomly generated; (iv) combine the remaining sim-
plexes using vertices from different simplexes, imposing 
that vertices with good objective function have a higher 
probability to be selected; (v) use a stopping rule (e.g. 
maximum allowed difference between the two best sim-
plexes). In this way, an evolutionary algorithm, similar to 
a genetic one, is created. 
 
Modifications to the algorithms 
In the original downhill simplex algorithm, no bounds 
are present for the parameters (or variable) defining the 
space. For biophysical models, it is necessary to define a 
domain for each parameter (or variable) because of the 
biophysical meaning of a parameter (e.g. the standard 
simplex could get the best objective function for a value 
of radiation use efficiency equal to 12 g MJ-1 for a C3 
plant, which is obviously unreasonable). The downhill 
simplex has been adapted to biophysical models by forc-
ing the objective function to the value of +∞ when the 
simplex puts a vertex outside the hyperspace region de-
fined by the biophysical domain of each parameter to 
calibrate. In the following the bounded simplex will be 
named BS. 
In our implementation of ESS, mutations are not in-
cluded in the algorithm, but the simplex is bounded in 
the parameters domain as described above. Our experi-
ence with simplex applied to crop growth model indi-
cates that the request of an evaluation outside the bio-
physical domain of parameters is very frequent. The con-
sequence is an uncontrolled, unsustainable mutation rate 
that slows the convergence to the minimum and in-
creases the number of model evaluation. In our approach 
mutation is introduced after the hybridization phase, with 
a fixed, user defined rate changing randomly some vertex 
of some of the new simplexes just created. 
 
The benchmark functions 
The Rosenbrock function 
The Rosenbrock function (Rosenbrock, 1960) (Eq. 1; 
Figure 2), also called the Rosenbrock’s valley or Rosen-
brock’s banana function, is famous in optimization re-
lated problems because of the slow convergence exhib-
ited by most optimization method when trying to get in 
the global minimum, which is zero at the point (1, 1) 
(http://www.mathworks.com/products/gads/demos.html?
file=/products/demos/shipping/gads/hybriddemo.html). 
 

( ) ( ) ( )222 1001, xyxyxf −⋅+−=         ( 1) 
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The Rastrigin function 
The Rastrigin function (Törn and Zilinskas, 1989) (Eq. 2; 
Figure 3) is considered a hard test for optimization algo-
rithms, since it has multiple local minima with close val-
ues. The global minimum is at the point (0, 0) 
(http://www.mathworks.com/products/gads/demos.html?
file=/products/demos/shipping/gads/hybriddemo.html). 
 

( ) ( )yxyxyxf ππ 2cos2cos1020, 22 +⋅−++=      (2) 
 

The test using the benchmark functions is carried out on 
a basis of 5000 runs. For BS we have tested the effect of 
the maximum number of allowed iterations, allowing for 
50, 100, 200 and 500 iterations. For ESS we have tested 
the effects of the number of simplexes generated at the 
beginning of optimization process using 5, 10, 15, and 20 
simplexes, in combination with the maximum number of 
iterations, as for BS. For each method and set-up combi-
nation, the number of findings of the global minimum is 
recorded. 

Results and discussion 
Performances of standard and evolutionary 
shuffled simplexes 
Optimization of the Rosenbrock function 
Results of the optimization of the Rosenbrock function 
using the bounded version of the downhill simplex and 
the evolutionary shuffled simplex are shown in Figure 4. 
Using different starting points, BS is able to reach the 
global minimum of the function in no more than the 60% 
of cases; 100 iteration are enough to reach the global 
minimum or a local one, and the increase of the number 
of allowed iterations does not improve the ability of the 
algorithm to find the global minimum. ESS performs bet-
ter than BS. Performance of ESS depends on the number 
of simplexes at the start of the procedure and on the 
maximum number of allowed iterations for each simplex. 
Even when the number of simplexes initialized at the 
start of the procedure is unusually low (5) and the maxi-
mum number of allowed iteration is limited to 50, ESS is  

 
FIG. 2 - 3-dimensional representation of the Rosenbrock function.  
FIG. 2 - Rappresentazione tridimensionale della funzione di Rosenbrock. 
 

 
FIG. 3 - 3-dimensional representation of the Rastrigin function. 
FIG. 3 - Rappresentazione tridimensionale della funzione di Rastrigin. 
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FIG. 4 - Test – comparison of the 
bounded simplex and of the evo-
lutionary shuffled simplex (also 
called genetic simplex and pa-
rameterized with different maxi-
mum numbers of iterations) using 
the Rosenbrock function. 

FIG. 4 - Test – confronto del sim-
plesso vincolato da campi di esi-
stenza e dell’evolutionary shuf-
fled simplex (o simplesso geneti-
co, con diverse parametrizzazioni 
riguardo il massimo numero di 
interazioni) usando la funzione di 
Rosenbrock. 
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FIG. 5 - Test – comparison of the 
bounded simplex and of the evolu-
tionary shuffled simplex (also 
called genetic simplex and param-
eterized with different maximum 
numbers of iterations) using the 
Rastrigin function. 

FIG. 5 - Test – confronto del simples-
so vincolato da campi di esistenza 
e dell’evolutionary shuffled sim-
plex (o simplesso genetico, con di-
verse parametrizzazioni riguardo 
il massimo numero di interazioni) 
usando la funzione di Rastrigin. 
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FIG. 6 - Fluxes of information among 
the components of the WARM 
simulation environment involved 
with calibration. 

FIG. 6 - Flussi di informazioni tra i 
componenti dell’ambiente di simu-
lazione di WARM implicati nella 
calibrazione. 
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able to find the global minimum 
in more than 75% of the at-
tempts. The percentage of suc-
cess in finding the global mini-
mum increases with the number 
of simplexes at the start of the 
procedure; this increase is more 
evident when the number of al-
lowed iterations is low. It is pos-
sible to obtain a percentage of 
success higher than 99% starting 
from 20 simplexes, independ-
ently from the number of al-
lowed iterations, or allowing for 
100 or more iterations and start-
ing with 15 simplexes. 
Optimization of the Rastrigin 
function 
Results of the optimization of the 
Rastrigin function using BS and 
ESS are shown in Figure 5. 
As for the Rosenbrock function 
the percentage of success in find-
ing global minimum with BS is 
about 50%, with small differ-
ences depending on the maxi-
mum number of allowed itera-
tions. The percentage of success 
of the ESS depends only on the 
number of initial simplexes, and 
the effect of the number of al-
lowed iterations is very small. A 
percentage of success greater 
than 95% is obtained starting 
with 10 simplexes; 20 simplexes 
allows for 100% of success. 

 

 

 
FIG. 7a - WARM user’s interface: automatic calibration on a 

single dataset. 
FIG. 7a - Interfaccia utente di WARM: calibrazione automatica 

su un singolo dataset. 

 

 FIG. 7b - WARM user’s interface: automatic calibration on 
more datasets. 

FIG. 7b - Interfaccia utente di WARM: calibrazione automatica 
su più dataset. 

 

  
 

 
FIG. 8 - Results of the application of the bounded simplex and of the evolutionary shuf-

fled simplex to calibrate the WARM parameters specific leaf are at emergence (SLA; 
m2 kg-1), radiation use efficiency (RUE; g MJ-1) and initial partitioning to leaves 
(RipL0; -) using simultaneously data from two experiments. Details are given in the 
text. The figure is produced using the software Voxler (Golden Software, Golden, 
Colorado). 

FIG. 8 - Risultati dell’applicazione del simplesso vincolato da campi di esistenza e 
dell’evolutionary shuffled simplex al fine di calibrare i parametri di WARM specific 
leaf area at emergence (SLA; m2 kg-1), radiation use efficiency (RUE; g MJ-1) and ini-
tial partitioning to leaves (RipL0; -) usando simultaneamente dati da due esperimenti. 
Ulteriori dettagli nel testo. La figura è prodotta utilizzando il software Voxler (Gol-
den Software, Golden, Colorado). 
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Implementation of the standard and evolu-
tionary shuffled simplexes in the WARM 
model 
Figure 6 shows the fluxes of information involved with 
the implementation of the standard and evolutionary 
shuffled simplexes within the WARM modelling system 
(Confalonieri et al., 2005; Confalonieri et al., 2006a). 
Figure 7 shows the sections of the WARM user’s inter-
face dedicated to the automatic calibration of crop model 
parameters using data from a single experiment (Figure 
7.a) and from more experiments (up to five) (Figure 7.b). 
Figure 8 shows the results of the application of the two 
methods to calibrate the WARM parameters specific leaf 
area (SLA; m2 kg-1), radiation use efficiency (RUE; g 
MJ-1) and initial partitioning to leaves (RipL0; -) using 
simultaneously data from two experiments. The two 
datasets are described by Confalonieri et al. (2006b) and 
refer to the experiments carried out in Opera (northern 
Milan) during 2002 and 2004. In this example, the objec-
tive function (relative root mean square error; %) was 
evaluated on above ground biomass separately for the 
two datasets. A composite objective function (COF; %) 
was then obtained adding the values of the RRMSEs 
computed for the two datasets. The axes refer to RUE, 
SLA, and RipL0. The blue ball in the up-right corner of 
the figure represents the global minimum (COF=46.5%) 
found by the evolutionary shuffled simplex (number of 
initial simplexes = 40; maximum number of iterations = 
100; number of generations = 3). The red, yellow, and 
green surfaces represent areas in the space where COF 
assumes, respectively, the values of 49.2%, 48.0 %, and 
47.3%. It is evident that values of COF very close to the 
best (46.5%) correspond to wide regions in the space 
generated by the three parameters under calibration. The 
red bubbles in the region close to the origin of the axes 
correspond to local minima. The two blue-white lines 
show the path of two standard simplexes which did not 
succeed in finding the global minimum. The starting 
guess for these two simplexes was in both cases inside 
the region of the space determined by the biophysical 
domain of each parameter under calibration. The colours 
of the two lines correspond to different values of COF: 
white in case of high COF values, blue in case of low 
COF values. It is evident that although in both cases the 
standard simplexes reach a satisfactory value of COF, 
they conclude their route inside two red bubbles which 
are very far from the global minimum. 
It is necessary to underline that other standard simplexes 
starting from different initial guesses reached the region 
of the space where the global minimum is located. 
Moreover, in the example reported in Figure 8, two dif-
ferent datasets were simultaneously used for calibration. 
When a single experiment was used, the performances of 
the two optimization algorithms were comparable. 
The last consideration is about the time required by the 
two methods: the standard simplex usually reaches a re-
sult in few steps (few tens of iterations) while the evolu-
tionary shuffled simplex can require hundreds or thou-
sands of iterations, according to its parameterization. 
 

Conclusions 
It is possible to find in the literature many approaches 
and algorithms able to automatically calibrate parameters 
or variables of simulations models. However, no scien-
tific evidence is known about the use of these powerful 
tools for calibrating crop models. In this work, the stan-
dard downhill simplex and the evolutionary shuffled 
simplex, considered by the Authors particularly suitable 
for biophysical models, are briefly described and tested 
using two standard functions considered hard tests for 
optimization methods. If the hyperspace delimited by the 
parameters being calibrated is particularly complex, usu-
ally the evolutionary shuffled simplex performs better. 
And this is often the case when biophysical models are 
calibrated using simultaneously data from different ex-
periments. Of course, requirements in terms of iterations 
are completely different for the two algorithms and this 
should be taken into account before applying them. 
The implementation of the two simplex methods in the 
WARM simulation environment allows carrying out sin-
gle- or multi-experiment calibrations in a really powerful 
and repeatable way. Although these optimization meth-
ods are already used for calibrating simulation models in 
other disciplines, this is the first time they are used, and 
coupled, for calibrating a crop model. 
Free software components for COM and .NET environ-
ments implementing both the discussed methods are un-
der development. 
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