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Abstract 
Remote sensing of soil and crop can be an attractive alternative to the traditional methods of field scouting because of the 
capability of covering large areas rapidly and repeatedly providing spatial and temporal information necessary for a sustai-
nable soil and crop management. The potential of remote sensing in agriculture is very high because it is able to infer about 
soil and vegetation amount as a non-destructive mean. Numerous spectral vegetation indices (VIs) have been developed to 
characterize vegetation canopies. Plant canopy reflectance factors and derived multispectral VIs are receiving increased at-
tention in agricultural research as robust surrogates for traditional agronomic parameters. Spectral reflectance and thermal 
emittance properties of soils and crops have been used extensively to predict ecological variables, such as percent vegeta-
tion cover, plant biomass, green leaf area index and other biophysical characteristics. VIs are strongly modulated by inte-
ractions of solar radiation with photosynthetically active plant tissues and thus also are indicative of dynamic biophysical 
properties related to productivity and surface energy balance.  
Recent advances on the resolution and availability of remote sensing imagery, coupled with a decrease in its associated 
costs, have allowed the collection of timely information on soil and crop variability by examining spatial and temporal pat-
terns of vegetation indices. Precision agriculture applications rely on some form of VIs to quantify spatial variability within 
a field.  The objective of this paper is to describe the biophysical principles of vegetation indices and to present a review of 
remote sensing applications for crop management. The paper first describes the techniques and capabilities of remote sen-
sing then presents a series of novel and practical applications of different types of vegetation indices in agricultural rese-
arch.  The future challenges and opportunities section highlights the benefits and limitations of vegetation indices and re-
mote sensing application in agriculture as well as the integration with decision support system and management-based crop 
simulation models. 
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Riassunto 
Il telerilevamento viene utilizzato in agricoltura come mezzo non distruttivo per la stima delle condizioni delle colture nello 
spazio e nel tempo. Dallo studio della riflettanza spettrale della vegetazione sono state definite delle relazioni quantitative 
tra la fenologia della coltura ed i dati telerilevati elaborate in indici di vegetazione (IV). Numerosi studi condotti in questi 
ultimi anni hanno evidenziato la possibilità di utilizzare il telerilevamento per la stima di parametri agronomici tradiziona-
li come ad esempio l’indicie di area fogliare (LAI), la percentuale di copertura vegetale, la biomassa ed altri parametri 
biofisici.  Gli IV risultano particolarmente sensibili a tre fattori esterni: l’effetto del sole; il background del suolo e gli ef-
fetti atmosferici. Il recente progresso scientifico e tecnologico associato ad una riduzione dei costi, consente di ottenere 
informazioni tempestive sulle colture mediante un’analisi spazio-temporale degli indici di vegetazione. L’uso degli indici di 
vegetazione rivesta un’importanza notevole nel contesto di applicazioni di agricoltura di precisione per la determinazione 
della variabilità spaziale delle produzioni.  
Il presente lavoro descrive i principi biofisici degli indici di vegetazione e riporta una sostanziale rassegna bibliografica 
sulle applicazioni del telerilevamento per gestione ottimale del suolo e delle colture. L’articolo, prima analizza le tecniche 
e le potenzialità del telerilevamento, poi prosegue con la descrizione di una serie di approcci innovativi di indici di vegeta-
zioni in agricoltura. La sezione delle prospettive future evidenzia i benefici ed i limiti delle applicazioni degli indici di ve-
getazione e descrive l’integrazione del telerilavamento con i modelli di simulazione ed i sistemi di supporto alle decisioni.  
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Introduction 
Agricultural practices determine the level of food 
production and, to a great extent, the state of the global 
environment. Agriculture production strategies have 
changed significantly over the last few years because of 
economic decisions to reduce inputs and maximize pro-
fits and by environmental guidelines to achieve a better a 
safer and more efficient use of agricultural chemicals.   
Current technologies available to farmers allow them to 
select the most profitable management strategy spanning 
from timing of planting (anticipated or delayed planting 
based on El Nino or La Nina years to cultivar selections 
(GMOs), from adopting conservation practices for sel-
ling carbon credits to industry to a variable rate applica-
tions through precision agriculture.  
Agricultural production systems are inherently variable 
due to spatial variation in soil properties, topography, 
and climate are spatially variable. To achieve the ultima-
te goal of sustainable cropping systems, variability must 
be considered both in space and time because the factors 
influencing crop yield have different spatial and tempo-
ral behavior. Advances in technologies such as Global 
Positioning Systems (GPS), Geographic Information 
Systems (GIS) and remote sensing have created the pos-
sibility to assess the spatial variability present in the field 
and manage it with appropriate site-specific practices.  
Remote imagery, an old technology that has recently be-
come widely available through small commercial ven-
dors and advances in satellite capabilities, also confirms 
large differences in canopy development patterns that 
lead to yield variability. Thus, producers and researchers 
alike are inundated with evidence of yield variability. 
However, evidence of producers developing innovative 
management strategies that capitalize on variability has 
been limited.   
The objective of this paper is to describe the biophysical 
principles of vegetation indices and to present a review 
of remote sensing applications for crop management. 
The paper first describes the techniques and capabilities 
of remote sensing then presents a series of novel and 
practical applications of different types of vegetation in-
dices in agricultural research.  The discussion highlights 
the benefits and limitation of vegetation indices and re-
mote sensing application in agriculture as well as the in-
tegration with decision support system and simulation 
models.  
 
Remote Sensing Techniques  
and Capabilities 
Remote sensing is the science and art of obtaining in-
formation about an object through the analysis of data 
acquired by a device that is not in contact with the object 
(Lillesand and Keifer, 1994). Remotely sensed data can 
be of many forms, including variations in force distribu-
tion, acoustic wave distribution or electromagnetic e-
nergy distributions and can be obtained from a variety of 
platforms, including satellite, airplanes, remotely pilot 
vehicles, handheld radiometers or even bucket trucks. 
They may be gathered by different devices, including 
sensors, film camera, digital cameras, video recorders.  
 

Our eyes acquire data on variations in electromagnetic 
radiations. Instruments capable of measuring electroma-
gnetic radiation are called sensors. Sensors can be dif-
ferntiated in : 
Passive sensors: without their own source of radiation. 
They are sensitive only to radiation from a natural origin. 
Active sensors: which have a built in source of radiation. 
Examples are Radar (Radio dection and ranging) and Li-
dar ( Light detection and ranging). 
This can be analogue (photography) or digital (multi-
spectral scanning, thermography, radar). The elements of 
a digital image are called resolution cells (during the data 
acquisition) or pixels (after the image creation). 
The implementation of remote sensing data by the user 
requires some knowledge about the technical capabilities 
of the various sensor systems. The technical capabilities 
of the sensor systems can be listed in three resolutions: 
• Spatial resolution:  concerns the size of the resolution 

cell on the ground in the direction of the flight and a-
cross. The size of the pixel determines the smallest de-
tectable terrain feature. 

• Spectral resolution: concerns the number, location in 
the electromagnetic spectrum and bandwidth of the 
specific wavelength bands or spectral bands. This reso-
lution differs from sensor to sensor and largely deter-
mines the potential use of the sensor system. 

• Temporal resolution: concerns the time lapse between 
two successive images of the same area. This primarily 
determned by the platform used, and secondly by the 
atmospheric conditions. 

 
 
Fig. 1 - Spectral signature of soil (wet and dry) and wheat crop 
Fig. 1 – Firma spettrale di un suolo (umido e asciutto) e di una 

coltura di frumento 

 
Biophysical principles of remote sensing in 
agriculture 
The potential of remote sensing in agriculture is very 
high because multispectral reflectance and temperatures 
of the crop canopies are related to two important physio-
logical processes: photosynthesis and evapotranspiration. 
Much research has been carried out with the goal of in-
ferring vegetation amount from remote sensing.  
Chlorophyll pigment absorbs mainly in the Blue and Red 
part of the electromagnetic spectrum and reflects the 
green (Chappelle et al., 1992). Near-infrared (NIR) ra-
diation is reflected from the structure of the spongy 
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Fig. 3 - Primary absorption bands and factors responsible for changes in the spectral reflectance curve.   
Fig. 3 – Bande primarie di assorbimento e fattori responsabili dei cambi della curva di riflettanza spettrale 
 

mesophyll tissue and cavities within the leaf. Therefore 
the percentage of radiation reflected from the leaf will be 
higher in the NIR than in the Green (Gausman et al., 
1969,  Gausman, et al., 1971). This spectral behaviour is 
useful to assess plant vigour and to separate canopy from 
bare soil (Fig.1, Fig.2 pag 48). Furthermore the discrimi-
nation of vegetation classes is possible using NIR reflec-
tance due to the different NIR reflectance among plant 
species (Fig.3). The spectral behaviour of the leaf 
changes during senescence and in plants subjected to 
stress (e.g disease, pest, N shortage) by reflecting more 
Red light and absorbing more NIR. Opposite behaviour 
is shown in healthy plants with high values of reflectance 
in the NIR region and low values in Red portion (Gaus-
man et al, 1977a; Gausman,  1981; Pinter et al., 2003). 
Soil reflects low in the blue, and its reflectance proper-
ties increase monotonically in the visible and NIR re-
gions of the spectrum (Price, 1990; Rondeaux et al. 
1996) . 
Spectral properties of the soil, however, depends by soil 
constituents such as soil organic matter, iron oxides and 
soil water, and soil roughness such as  particle and ag-
gregate size (Rondeaux et al. 1996). High soil water and 
high organic matter contents show lower reflectance 
while soils with low water content and smooth surface 

tend to be brighter (Daughtry, 2001). In the presence of 
iron oxides soil reflectance is higher in the red portion of 
the spectrum. Crop residues on soil surface also causes 
variation in reflectance compared to bare soil and partial 
canopy cover (Daughtry et al., 1996; Nagler et al., 2000; 
Barnes et al., 2003).  
For a given type of soil variability, the soil reflectance 
(ρ) at one wavelength is often functionally related to the 
reflectance in another wavelength (Jasinki and Eagleson, 
1989; Rondeaux et al. 1996). So the relationship between 
two wavelength (λ1, λ2 ) can be expressed as follow:   
 

ρ(λ2) = a ρ(λ1) + b    (1) 
 

The slope a and intercept b are dependent on the both 
wavelength and the type of variability. The relationship 
shown above yield a line called soil line, defined as an 
hypothetical line in spectral space that describes the 
variation in the spectrum of bare soil in the image.  Other 
lines that are important in the developed VIs are Vegeta-
tion isoline and index isoline. Vegetation isoline are 
formed by a set of reflectance points representing the 
same optical and structural properties of the canopy, so 
that have constant leaf reflectance, leaf transmittance, 
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Fig. 5 – Spectral reflectance of barley, durum wheat and different 

level of pappy infestation in Puglia, Italy. 
Fig.5 – Riflettanza spettrale di orzo, frumento duro e diversi livelli 

di infestazione di papavero 
 

LAI and percentage of green cover, but different bright-
ness conditions. An index isoline, shows any point on the 
line with the same index value (Yoshioka et al., 2000). 
Huete and Jackson (1988) have studied the variation of 
VIs against variation in canopy background brightness. 
In fact if the noise effect is low the assessment of VIs 
will permit to improve estimation of vegetation parame-
ters. Therefore Qi et al., (1994) have used vegetation 
isoline to reduce noise effect. Yoshioka et al. (2000) no-
ticed that the use of vegetation isolines is essential be-
cause VIs should yield constant values of all reflectance 
points on the same vegetation isoline, constant vegeta-
tion isoline with different backgrounds. Three important 
properties are useful in the use of vegetation isoline to 
design VIs: 
• The intersection between soil line and vegetation 

isoline (as a function of LAI) 
• The isoline slope 
• The intercept (NIR-intercept) 
 
Baret and Guyot (1991), Qi et al.(1994) and Huete 
(1990) pointed out that the slope of a vegetation isoline  
tends to increase exponentially with LAI; the intercept 
shows the inverse behaviour of the slope and the inter-
section between the two lines occur generally in the third 
quadrant and tend to reach the first quadrant as the LAI 
increase. Not all soils are alike.  Different soils have dif-
ferent reflectance spectra.  As discussed above, all of the 
vegetation indices assume that there is a soil line, where 
there is a single slope in Red-NIR space.  Normally the 
assumption is that some VIs are obtained by the conver-
gence of the two lines at the origin or that isoline and soil 
line are parallel. Soils show different Red-NIR slopes in 
a single image, thus the assumption proposed above is 
not exactly right and changes in soil conditions will give 
incorrect information in vegetation index. Soil noise is 
highly significant when vegetation cover is low.   
The spectral signature of crop canopies in the field are 
more complex and often quite different from those of 

single green leaves measured under controlled light con-
ditions (Pinter et al., 2003). Although the leaf reflectance 
signature may be the same during the season, the dyna-
mic proportion of canopy/soil affects the final values of 
canopy spectral reflectance.  
 
Estimation of Vegetation Properties  
Use of remote sensing in agricultural management has 
been indirect for many years, beginning with mapping 
the soil resource on aerial photographs as early as 1929 
(Bauer, 1975 ). Soils delineated according to landscape 
patterns shown on aerial photographs had properties that 
caused differences in productivity and agricultural inputs 
requirements. Aerial photographs filtered at critical wa-
velengths showed tone patterns related to stress in crop 
plants (Colwell 1974; Bauer, 1975). When the satellite 
technology became available, analysis of remotely sen-
sed data was, and still is, the objective of many multidi-
sciplinary research programs around the world. Exam-
ples of an airborne false color composite imagery is 
shown in Fig. 4 (pag.48) . 
 

Vegetation monitoring is usually accomplished by sim-
ple regression approach, modeling approach using remo-
te sensing data and by computing vegetation indices 
(VIs).  
 
Simple Regression Approach  
A simple regression approach can be applied because the 
reflectance in the red spectral region decreases while that 
in the near-infrared (NIR) region increases when the ve-
getation density (LAI) increases. The relation between 
LAI and spectral reflectance can be obtained by simply 
regress ground measured LAI and the surface reflectan-
ce. This approach has the advantage to be simple but has 
several limitations. The first limitation is that to get this 
relationship ground truth LAI measurements are neces-
sary at the same site and time as the spectral reflectances 
are collected. The second limitation is that the relation-
ship between LAI and spectral reflectance is crop type 
dependent. This approach is also vulnerable to noise 
from soil background, atmospheric effect, and especially 
bidirectional properties of the vegetation. Soil influences 
on incomplete canopy spectra are due to the soil 
background signal on the optical properties of the over-
lying canopy (Jackson et al., 1980; Huete, 1988). Diffe-
rences in Red and NIR flux transfers through a canopy 
result in a complex soil-vegetation interaction, which 
makes it difficult to subtract for soil background influen-
ces (Kimes et al., 1985; Sellers, 1985; Choudhury, 
1987). The influences are dependent on the reflectance 
properties of the soil. Soil background effect is conside-
red significant at intermediate canopy covers (Huete et 
al., 1985). A vegetated canopy will scatter and transmit 
NIR flux toward the soil as well as in between individual 
plants. The soil reflects part of the scattered and tran-
smitted flux back to the sensor. The upper leaves absorb 
the red light, and the irradiance at the soil surface is only 
the one received directly from the sun and sky through 
canopy gaps.  
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Modeling Approach 
This approach includes radiative transfer and empirical 
models. The empirical models have the advantage of 
being simple but when inverted they infer little informa-
tion on the vegetation. The radiative transfer model ap-
proach characterize light interaction with vegetation ca-
nopies and predicts the bidirectional reflectance distri-
bution function (BRDF) as function of the observation 
geometry (Verhoef, 1984; Deering et al., 1990; Pinty et 
al., 1992; Strahler, 1994). Verhoef (1984) developed the 
SAIL (Scattering by Arbitrarily Inclined Leaves) model 
as function of solar position and sensor’s viewing geo-
metry. The SAIL model assumes that the leaves are 
randomly oriented and uniformly distributed in a single 
layer. The model requires reflectance of the soil under-
neath, LAI, leaf reflectance and leaf transmittance as 
inputs. Inverting the model with remote sensing data, 
LAI can be estimated. There are several other models 
more complicated due to parameters that are difficult or 
impossible to measure in the field. 
The first two approaches to estimate vegetation with re-
mote sensing have the advantage to be simple but the te-
chnology transfer behind these approaches is limited due 
to the ground truth measurements necessary, and for the 
sensitivity to birectional effect. The advantage of the 
modeling approach is that most radiative transfer models 
are based on the birectional properties of the natural land 
surface, therefore, by inverting them surface physical 
properties can be more objectively inferred (Qi et al., 
1995). The other advantage of the models is that the op-
tical properties of leaves are characterized by parameters 
(leaf reflectance, transmittance, absorptance, LAI etc.) 
required by the model thus BRDF models can predict the 
bidirectional reflectance in different viewing directions 
and illumination conditions. This modeling approach has 
great potential for application with multidirectional mea-
surements. One major limitation, though, is the limited 
availability of multidirectional measurements. They can-
not be obtained from a single sensor and this conse-
quently limits the direct application of the model for ve-
getation assessment. Qi et al., 1995 applied a model-to 
model approach to overcome this limitation. The approa-
ched consisted in using a series of models inverted to o-
btain the parameters required for the simulation of bidi-
rectional reflectances. Remote sensing data were collec-
ted using a Modular Multi-band Radiometer (MMR). 
They found satisfactory results, but the accuracy of pre-
dicting LAI with this approach is dependent on the accu-
racy of the models and on the atmospheric corrections.  
 
Vegetation indices 
Several vegetation indices have been developed by linear 
combination or ratios of red, green and near-infrared 
spectral bands. Vegetation indices are more sensitive 
than individual bands to vegetation parameters (Baret 
and Guyot, 1991; Qi et al., 1993). Plant canopy reflec-
tance factors and derived multispectral VIs are receiving 
increased attention in agricultural research as robust sur-
rogates for traditional agronomic parameters (e.g. leaf 
area index (LAI), fraction of green cover, fraction of ab-
sorbed photosynthetically active radiation (fAPAR) etc. 
Often viewed simply as measures of plant biomass or 

green leaf area index, VIs are strongly modulated by in-
teractions of solar radiation with photosynthetically acti-
ve plant tissues and thus also are indicative of dynamic 
biophysical properties related to productivity and surface 
energy balance. Vegetation indices (VIs) have been de-
signed to find a functional relationship between crop 
characteristics and remote spatial observation (Wiegand 
et al., 1990). VIs tend to reach a saturation level asymp-
totically for values of LAI between 3 to 6, based on the 
type of index used and type of plant (Carlson, et al., 
1997; Aparicio et al., 2000).  
Another application is the use of VIs as a mapping de-
vice. In this case VIs are use in image classification, to 
separate vegetated from non-vegetated areas, to distin-
guish between different types and  densities of vegeta-
tion, to monitor seasonal variations in vegetative vigor, 
abundance and distribution  (Campbell, 1996; Barnes et 
al., 2003).  
 
VIs are influenced by external and internal factors (Yo-
shioka et al. 2000; Huete, 1989; Huete and Jackson, 
1988; Baret and Guyot, 1998). External factor such as 
sensor calibration, sun and view angle and atmospheric 
condition, internal factors, instead, are variation in can-
opy and leaf optical properties and canopy background.  
To understand how VIs are designed, it is essential to 
know some concepts related to influence of soil and the 
use of the soil line and vegetation isoline. At this point is 
useful to introduce the different kind of VIs that have 
developed over the years. Some of the indices have de-
veloped considering that all vegetation isoline converge 
at a single point. These indices are called “ratio-based” 
and measure the slope of the line between the point of 
convergence and the soil line.  The indices are: Normal-
ized Difference Vegetative Index (NDVI), Soil Adjusted 
Vegetative Index (SAVI) and Ratio Vegetative Index 
(RVI). When the vegetation isoline are considered paral-
lel to soil line, and the distance is measured perpendicu-
lar to the soil line, the indices are called “perpendicular” 
vegetation indices. These indices are: Perpendicular 
Vegetative Index (PVI), Weighted Difference Vegetative 
Index (WDVI), Three Dimensional Greenness Index 
(GVI3) and Difference Vegetative Index (DVI). 
 
Daughtry et al. (2000) classified VIs into two categories: 
Intrinsic indices, that  include ratios of two or more 
bands in the visible and NIR wavelengths (NIR/Red; 
NIR/Green; NDVI; Green Normalized Difference Vege-
tative Index). These indices are sensitive to background 
reflectance properties and are often difficult to interpret 
at low LAI (Daughtry et al.,2000; Rondeaux et al., 
1996); Soil-line vegetation indices, use the information 
of soil line in NIR-Red reflectance to reduce the effect of 
the soil on canopy reflectance (SAVI; Optimized Soil 
Adjusted Vegetative Index (OSAVI); Transformed Soil 
Adjusted Vegetative Index (TSAVI)).  
Baret and Guyot (1991) have classified VIs into two 
categories: Indices characterized by “slope”: RVI; 
NDVI; SAVI; TSAVI. Indices  characterized by “dis-
tance”: PVI; WDVI; GVI. 
 



B. Basso et al. - Rivista Italiana di Agrometeorologia  36-53  (1) 2004 

 41 

 
Theory of Vegetation Indices 
 
RVI is the Ratio Vegetation Index (Jordan, 1969; Pear-
son and Miller, 1972). A common practice in remote 
sensing is the use of band ratios to eliminate various al-
bedo effects. In this case the vegetation isoline converge 
at origin. Soil line has slope of 1 and passes through ori-
gin, it range from 0 to infinity. And it is calculated as fol-
low:  
 

RVI = ρNIR/ρred   (2) 
 

NDVI is the Normalized Difference Vegetation Index 
(Kriegler, 1969; Rouse et al., 1973) and it is the common 
vegetation index referring to.  This index vary between -
1 and 1. In this case vegetation isoline are considered to 
be convergent at origin and soil line slope is 1 and 
passed through origin. It is calculated as:  

 
NDVI = ρNIR-ρred / ρNIR-ρred      (3) 

 
VIs assume that external noise (soil background, atmo-
sphere, sun and view angle effect) is normalized, but this 
assumptions is not always true. The relative percentage 
of sunlit, shaded soil and plants components is highly 
dependent upon the view angle. Qi et al. (1995) studied 
the effect of multidirectional spectral measurements on 
the biophysical parameter estimation using a modeling 
approach. When the bidirectional effect is transformed 
from reflectance domain into vegetation index domain, it 
could be reduced (Jackson et al., 1990; Huete et al., 
1992) or increased (Kimes et al., 1985; Qi et al., 1994b), 
depending on the vegetation types and solar zenith an-
gles. Qi (1995) suggested that when bidirectional effect 
is a major concern (NDVI/NDVIo > 1) it is better to use 
NIR rather than NDVI, and that bidirectional effect on 
vegetation indices must be quantified before a quantitati-
ve VI-LAI relationship can be used. 
 
The Green Normalized Vegetative Index (GNDVI) is a 
modification of the NDVI where the Red portion is sub-
stituted by the reflectance in the Green band (Gitelson et 
al., 1996).  
 
DVI is the Difference Vegetation Index, (Richardson and 
Everitt (1992), but appears as VI in Lillesand and Kiefer 
(1994). Vegetation isolines are parallel to soil line. Soil 
line has arbitrary slope, passes through origin, and index 
range is infinite. 

 
DVI = ρNIR-ρred   (4) 

 
PVI is the Perpendicular Vegetation Index (Crippen, 
1990), and it is sensitive to atmospheric variation.  In this 
case vegetation isolines are parallel to soil line. Soil line 
has arbitrary slope, passes through origin and the index 
range from -1 to 1. 

 
PVI = 1/√a2+1 (ρNIR - aρred -b)   (5) 

 
Where a and b are the coefficient derived from the soil 
line: NIRsoil= a REDsoil + b. 

 
WDVI is the Weighted Different Vegetation Index 
(Clevers, 1988) and like PVI is sensitive to atmospheric 
variation (Qi et al., 1994). Vegetation isolines are paral-
lel to soil line. Soil line has arbritary slope and passes 
through origin, vegetation index range is inifinite. 

 
WDVI = ρNIR - aρred   (6) 

 
Where a is the slope of the soil line. 
 
Huete (1988) proposed a Soil Adjusted Vegetation Index 
(SAVI) to account for the optical soil properties on the 
plant canopy reflectance. SAVI involves a constant L to 
the NDVI equation. The index range is   from -1 to +1. 
    

SAVI = ρNIR - ρred / (ρNIR+ρred+L) (1+L)   (7) 
 
The constant L is introduced in order to minimize soil-
brightness influences and to produce vegetation isolines 
independent of the soil background (Baret and Guyot, 
1991). This factor vary from 0 to infinity and the range 
depends on the canopy density. For L=0 SAVI is equal 
to NDVI, for L tends to infinity, SAVI is equal to PVI. 
However for intermediate density L was found equal to 
0.5. Huete (1988) suggested that there maybe two or 
three optimal adjustment factor (L) depending on the 
vegetation density (L=1 for low vegetation; L=0.5 for 
intermediate vegetation densities; L=0.25 for higher 
density). 

 
TSAVI is the Transformed Adjusted Vegetation Index 
(Baret et al., 1989), and it is a measure of the angle be-
tween the soil line and the vegetation isoline. The soil 
line has arbitrary slope and intercept. The interception 
between soil line and vegetation isoline occur some-
where in the third quadrant. Baret and Guyot (1991) have 
proposed an improving of the initial equation as follow: 

 
TSAVI = a(ρNIR - aρred –b)  / [aρNIR + ρred – a b + χ (1 + a2)] 

(8) 
 

Where a and b are soil line parameters (slope and inter-
cept of the soil line) and χ has been adjusted so as mini-
mize background effect, and its value is 0.08. TSAVI 
values ranging from 0 for bare soil and is close to 0.70 
for very dense canopies as reported from Baret and 
Guyot (1991). 
 
At 40% green cover, the noise level of the NDVI is 4 ti-
mes the WDVI and almost 10 times the SAVI, corre-
sponding to a vegetation estimation error of +/- 23% for 
the NDVI, +/- 7% cover for the WDVI, and +/- 2.5% for 
the SAVI. Therefore the SAVI is a more representative 
vegetation indicator than the other Vis, but an optimiza-
tion of the L factor will further increase his value (Qi et 
al., 1994). 
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Qi et al. (1994) developed a Modified Soil Vegetation 
Index (MSAVI). This index provide a variable correction 
factor L. Geometrically vegetation isolines don’t con-
verge to a fixed point as SAVI, and soil line has not 
fixed slope and passes through origin. Correction factor 
is based on calculation of NDVI and WDVI as shown by 
equations 9 and 10: 

  
MSAVI = ρNIR - ρred / (ρNIR+ρred+L) (1+L)   (9) 

 
where L is calculated as follow:  

 
  L = 1 – 2 a * NDVI * WDVI   (10) 

 
This term is computed to explain the variation of L 
among different types of soils, moreover L varies with 
canopy cover, and it’s range varies from 0 for very 
sparse canopy to 1 for very dense canopy. To further mi-
nimize the soil effect Qi et al. (1994) use an L function 
with boundary condition of 0 and 1 (Ln= 1-MSAVIn-1) 
and an MSAVI equal to: 
 

MSAVIn=[(ρNIR - ρred)/ρNIR + ρred+1– MSAVI n-1]*(2-MSAVI n-1) 
  (11) 

 
The final solution for MSAVI  is: 
 
MSAVI = 2 ρNIR  + 1 – [(2 ρNIR  + 1)2 –8(ρNIR - ρred) ]0.5 / 2 

(12) 
 
OSAVI is the Optimized Soil Adjusted Vegetation In-
dex. This index has the same formulation of the SAVI 
family indices, but the value L or X as refered by Ron-
deaux et al. (1996) is the optimum value that minimizing 
the standard deviations over the full range of cover.  

  
OSAVI = ρNIR - ρred / (ρNIR+ρred+0.16) (1+0.16)   (13) 

 
GESAVI is the Generalized Soil Adjusted Vegetation 
Index. This index is based on an angular distance be-
tween the soil line and the vegetation isolines. GESAVI 
is not normalized and vary from 0 to 1 (from bare soil to 
dense canopies). Vegetation isolines are neither parallel 
nor convergent at the origin.Vegetation isolines intercept 
the soil line at any point depending on the vegetation 
amount. 

 
GESAVI = ρNIR - ρred b - a / ρred + Z   (14) 

 
Z is the soil adjustment coefficient, and its based on the 
assumption that vegetation isolines intercept soil line at 
any point in the third quadrant. Z decrease when vegeta-
tion cover increase. However, practically, Z consider 
vegetation isolines convergent in a point. At least this 
hypotesis may be limited for dense canopies (Gilabert et 
al., 2002). To normalize soil effects Z value is found at 
0.35. 

 
Indices that include the Mid-InfraRed Band (MIR) are:  
 

Stress related Vegetation Index (STVI) (Gardener, 
1983):  
 

STVI = ρMIR * ρred / ρNIR   (15) 
 
Cubed ratio index (CRVI) (Thenkabail et al.,1994): 
 

CRVI = (ρNIR  / ρMIR)3   (16) 
 
The VIs that account for soil effect, do not consider at-
mospheric conditions, sensor viewing angle, solar illu-
mination conditions. Kaufman and Tanré (1992) develo-
ped the Atmospherically Resistant Vegetation Index 
(ARVI) and the Soil and Atmospherically Resistant Ve-
getation Index (SARVI and SARVI2) where the reflec-
tances are corrected for molecular scattering and ozone 
absorption. Liu and Huete (1995) incorporated a soil a-
djustment and atmospheric resistance concepts into a 
Modified Normalized Vegetation Index (MNDVI). 
SARVI2 as well as ARVI, SARVI are able to remove 
smoke effect and cirrus clouds from images (Huete et al., 
1996). 
 
Remote sensing application for  
evapotranspiration estimation 
 
All objects on the Earth’s surface emit radiation in the 
thermal-infrared (TIR) part of the spectrum (~ 8 to 14 
µm). This emitted energy has proven useful in assessing 
crop water stress because the temperature of most plant 
leaves are mediated by soil water availability and its ef-
fect on crop evaporation (Jackson, 1982; Hatfield et al., 
1983; Moran et al., 1989b; Pinter et al., 2003). In recent 
years, there has been much progress in the remote sen-
sing of some of the parameters that can contribute to the 
estimation of evapotranspiration (ET). These include 
surface temperature, surface soil moisture, vegetative 
cover and incoming solar radiation. The surface tempe-
rature can be estimated from measurements at the ther-
mal infrared wavelengths of the emitted radiant flux, 
that is the 10.5 and 12.5 µm. The microwave emission 
and reflection or backscatter from soil, primarily for 
wavelengths between 5 and 21 cm, are dependent on the 
dielectric properties of the soil, which are strong fun-
ctions of the soil moisture content. Thus, measurements 
of these microwave properties can be used to obtain e-
stimates of the surface soil moisture.  
Crop stress, due to water deficiency, crop diseases, is 
often shown with a decrease in the transpiration rate of 
the crop. Several studies have been carried on estima-
ting ET with remote sensing data (Reginato, 1985; Ja-
ckson et al., 1987; Moran, et al., 1992, 1994, 1995; Ma-
as, 1992,1993a, 1993b; Carlson et al., 1995, Hunsaker 
et al., 2003). A combination of remote sensing data and 
soil-plant-atmosphere models is commonly seen in the 
literature for ET estimation. The location of the “red 
edge” obtained with hyperspectral measurements shows 
potential for early detection of water stress (Shibayama 
et al., 1993). “Stress-Degree-Day” (SDD; Idso et al., 
1977b), “Crop Water Stress Index” (CWSI; Idso et al., 
1981; Jackson et al., 1981), “Non-water-stressed baseli-
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ne (Idso et al., 1982), “Thermal Kinetic Window” 
(TKW; Mahan and Upchurch, 1988), and “Water Defi-
cit Index” (WDI, Moran et al., 1994) are indices that 
measure plant stress induced by water stress. These in-
dices have been used in research on more than 40 diffe-
rent crop species (Gardner et al., 1992a; Gardner et al., 
1992b). Most studies have shown that the thermal infra-
red is more sensitive to water stress than is reflectance 
in visible or NIR. However, the reflective portion of the 
spectrum and VIs also respond to plant water stress sta-
tus when the canopy changes architecture through the 
leaf rolling or wilting (Moran et al., 1989a) or alters the 
senescence rate (Pinter et al.,1981). Thermal plan water 
stress indices provide valuable information and adequa-
te lead time to schedule irrigations.  
Thermal indices can overestimate water stress when ca-
nopy cover is full and the sensors view a combination of 
cool plant and warm soil temperatures. The WDI a 
combination of VI and TIR (Moran et al., 1994; Clarke, 
1997 and Clarke et al, 2001) seems to have overcome 
this problem since it accounts for the amount of plant 
cover through the VI part of the index 
A cost benefit study by Moran (1994) shows that irriga-
tion scheduling with thermal infrared sensors on aircraft 
is both practical and affordable if growers join together 
to purchase the images. Hatfield (1984c) found that spa-
tial variation of surface temperature in wheat changed 
with the degree of water availability. One alternative 
tool for a spatially variable irrigation can be to mount 
infrared sensors on irrigation booms to provide the ca-
pability to vary irrigation amounts as the unit travels 
across the field. 
VIs can be then used as surrogates for crop coefficients 
(Kcb). Crop coefficients are usually obtained from cur-
ves or tables and they lack flexibility to account for spa-
tial and temporal crop water needs caused by uneven 
plant population, unusual weather patterns, non uniform 
water application, nutrient stress or pest pressures 
(Bausch and Neale, 1987; Choudhry et al., 1994; Pinter 
et al., 2003). 
 
Soil Salinity 
 
Remote sensing can also be used to map areas of soils 
that have been contaminated by salt. The principles 
behind this applications is that salt in the soil produces 
an unusually high surface reflectance. Salted areas can 
also be identified by detecting areas with reduces bio-
mass or changes in spectral properties of plant growing 
in affected areas (Barnes et al., 2003).  
Leone et al. (2001) evaluated the impact of soil salinity 
induced through irrigation with saline water on plant 
characteristics and assessed the relationships between 
these characteristics and spectral indices. They showed 
that soil salinity had a clear impact on plant characteri-
stics and significant relationships between chlorophyll 
content, biomass, NDVI and red edge peak. 
Studies have also shown an increase in canopy tempera-
ture of plants exposed to excessive salts in irrigation 
water (Howell et al., 1984a; Wang et al, 2002b), sugge-
sting the possibility of previsual  detection of stress 

which can manage with the appropriate measure of lea-
ching or irrigation with good quality water. 
 
Remote Sensing in Precision Agriculture 
 
Direct Application 
The past research efforts on remote sensing have provi-
ded a rich background of potential application to site-
specific management of agricultural crops. In spite of  
the extensive scientific knowledge, there few examples 
of direct application of remote sensing techniques to pre-
cision agriculture in the literature. The reasons are 
mainly due to the difficulty and expense of acquisition of 
satellite images or aerial photography in timely fashion. 
With the progress in GPS and sensor technology direct 
application of remote sensed data is increasing. Now an 
image can be displayed on the computer screen with re-
al-time position superimposed on it. This allows for na-
vigation in the field to predetermined points of interest 
on the photograph. Blackmer et al.(1995) proposed a 
system for N application to corn based on photometric 
sensors mounted on the applicator machine. They sho-
wed that corn canopy reflectance changed with N rate 
within hybrids, and the yield was correlated with the re-
flected light. Aerial photographs were used to show areas 
across the field that did not have sufficient N. The ma-
chine reads canopy colors directly and applies the appro-
priate N rate based on the canopy color of the control 
(well fertilized) plots (Blackmer and Schepers, 1996; 
Schepers et al., 1996).  
Sensor technology has seen many innovations, but it is 
currently behind other technologies and their availability 
has been cited as the most critical factor preventing the 
wider implementation of precision agriculture.  
Management zones can be extracted using VIs maps and 
with the use of a geographic information system (GIS) 
can be viewed over the a remotely sensed image. The 
computer monitor displayed the image along with the 
current position as the applicator machine moved on the 
field. When interfaced with variable rate sprayer equi-
pment, real time canopy sensors could supply site-
specific application requirements improving nutrient use 
efficiency and minimizing contamination of groundwater 
(Schepers and Francis, 1998).  
 
Indirect Applications  
The most common indirect use of remote sensing images 
is as a base map on which other information is layered in 
a GIS. Other indirect applications include use of remo-
tely measured soil and plant parameters to improve soil 
sampling strategies, remote sensed vegetation parameters 
in crop simulation models, and use in understanding cau-
ses and location of crop stress such as weeds, insect, and 
diseases. 
Satellite based images have limited use in precision agri-
culture due the cost related to the image acquisition and 
to the restricted spectral resolution, coarse spatial resolu-
tion and the inadequate temporal resolution of the ima-
ges.  
Moran et al. (1997) in their excellent review on opportu-
nities and limitations for image-based remote sensing in 
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precision agriculture, classify the information required 
for site specific management in information on seaso-
nally stable conditions, information on seasonally varia-
ble conditions, and information to find the causes for 
yield spatial variability and to develop a management 
strategy. The first class of information includes condition 
that do not vary during the season (soil properties) and 
only need to be determined at the beginning of the 
season. Seasonally variable conditions, instead, are those 
that are dynamic within the season (soil moisture, weeds 
or insect infestation, crop diseases) and thus need to be 
monitored throughout the entire season for proper 
management. The third category is comprehensive of the 
previous two to determine the causes of the variability. 
Remote sensing can be useful in all three types of infor-
mation required for a successful precision agriculture 
implementation. Muller and James (1994) suggested a 
set of multitemporal images to overcome the uncertainity 
in mapping soil texture due to differences in soil moistu-
re and soil roughness. Moran et al. (1997) also suggested 
that multispectral images of bare soil could be used to 
map soil types across a field.  

 
Crop growth and intercepted radiation 

 
Remote sensing techniques have also been applied to 
monitor seasonally variable soil and crop conditions. 
Knowledge of crop phenology is important for 
management strategies. Information on the stage of the 
crop could be detected with seasonal shifts in the “red 
edge” (Railyan and Korobov, 1993), bidirectional reflec-
tance measurements (Zipoli and Grifoni, 1994), and 
temporal analysis of NDVI (Boissard et al., 1993). 
Moreover Wiegand et al. (1991) consider them as a 
measure of vegetation density, LAI, biomass, photosyn-
thetically active biomass, green leaf density, photosyn-
thesis rate, amount of photosynthetically active tissue 
and photosynthetic size of canopies. 
Aparicio et al. (2000) using three VIs (NDVI; Simple 
Ratio; Photochemical Reflectance Index) to estimate 
changes in biomass, green area and yield in durum 
wheat. They results suggest that under adequate growing 
conditions, NDVI may be useful in the later crop stage, 
as grain filling, where LAI values are around 2.  SR, un-
der rainfed condition, correlated better with crop growth 
(total biomass or photosynthetic area) and grain yield 
than NDVI. This fact is supported by the nature of rela-
tionship between these two indices and LAI. SR and LAI 
show a linear relationship, compared to the exponential 
relationship between LAI and NDVI. However the utility 
of both indices, as suggested by the authors, for predict-
ing green area and grain yield is limited to environments 
or crop stages in which the LAI values are < 3. They 
found that in rainfed conditions, the VIs measured at any 
stage were positively correlated  (P < 0.05) with LAI and 
yield. Under irrigation, correlations were only significant 
during the second half of the grain filling. The integra-
tion of either NDVI, SR, or PRI from heading to matur-
ity explained 52, 59 and 39% of the variability in yield 
within twenty-five genotypes in rainfed conditions and 
39, 28 and 26% under irrigation.    

Shanahan et al. (2001) use three different kinds of VIs 
(NDVI, TSAVI, GNDVI) to asses canopy variation and 
its resultant impact on corn (Zea mays L.) grain yield. 
Their results suggest that GNDVI values acquired during 
grain filling were highly correlated with grain yield, cor-
relations were 0.7 in 1997 and 0.92 in 1998. Moreover 
they found that normalizing GNDVI and grain yield 
variability, within treatments of four hybrids and five N 
rates, improved the correlations in the two year of ex-
periment (1997 and 1998). Correlation, however, in-
creases with a net rate in 1997 from 0.7 to 0.82 rather 
than in 1998 (0.92 to 0.95). Therefore, the authors sug-
gest that the use of GNDVI, especially acquiring meas-
urements during grain filling is useful to produce relative 
yield maps that show the spatial variability in field, of-
fering an alternative to use of combine yield monitor. 
 
Raun et al. (2001) determined the capability of the pre-
diction potential grain yield of winter wheat (Triticum 
aestivum L.) using in-season spectral measurements col-
lected between January and March. NDVI was computed 
in January and March and the estimated yield was com-
puted using the sum of the two postdormancy NDVI 
measurements divided by the Cumulative Growing De-
gree Days from the first to the second reading. Signifi-
cant relationships were observed between grain yield and 
estimated yield, with R2 = 0.50 and P > 0.0001 across 
two years experiment and different (nine) locations. In 
some sites the estimation of potential grain yield, made 
in March and measured grain yield made in mid-July dif-
fered due to some factors that affected yield.  
The capability of VIs to estimate physiological parame-
ters, as fAPAR,  is studied on other crops, faba bean (Vi-
cia faba L.) and semileafless pea (Pisum sativum L.) that 
grows under different water condition, as an experiment 
followed by Ridao et al. (1998) where crops see above 
grew both under irrigated and rainfed  conditions. They 
have computed several indices (RVI, NDVI, SAVI2, 
TSAVI, RDVI, PVI) and linear, exponential and power 
relationship between VI and fAPAR were constructed to 
assess fAPAR from VIs measurements. During the pre-
LAImax phase, in both species, all VIs correlated highly 
with fAPAR, however R2 at this stage did not differ sig-
nificantly between indices that consider soil line (SAVI2 
and TSAVI) and those that did not consider it (NDVI, 
RVI, RDVI). In post-LAImax  phase the same behaviour 
was observed. All VIs are affected by the hour of meas-
urement at solar angles grater than 45°. Authors con-
clude that simple indices as RVI and NDVI, can be used 
to accurately assess canopy development in both crops, 
allowing good and fast estimation of fAPAR and LAI. 

 
 
 

Nutrient Management 
 

Appropriate management of nutrients is one of the main 
challenges of agriculture productions and at the same en-
vironmental impact. Remote sensing is able to provide 
valuable diagnostic methods that allow for the detection 
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of nutrient deficiency and remedy it with the proper ap-
plication.  
Several studies have been carried out with the objective 
of using remote sensing and vegetation indices to deter-
mine crop nutrient requirements (Schepers et al., 1992; 
Blackmer et al., 1993; Blackmer et al., 1994; Blackmer 
et al., 1996a; Blackmer et al., 1994b; Blackmer and 
Schepers 1996; Daughtry et al. (2000). Results from the-
se studied concluded that remote sensing imagery can be 
a better and quicker method compared to traditional 
method for managing nitrogen efficiently.  
Bausch and Duke (1996) developed a N reflectance in-
dex (NRI) from green and NIR reflectance of an irrigated 
corn crop. The NRI was highly correlated to with an N 
sufficiency index calculated from SPAD chlorophyll me-
ter data. Because the index is based on plant canopy as 
opposed to the individual leaf measurements obtained 
with SPAD readings, it has great potential for larger 
scale applications and direct input into a variable rate 
application of fertilizer. 
Ma et al. (1996) studied the possibility to evaluate if 
canopy reflectance and greenness can measure changes 
in Maize yield response to N fertility. They have derived 
NDVI at three growing stage: preanthesis, anthesis and 
postanthesis. NDVI is well correlated with leaf area and 
greenness. At preanthesis NDVI showed high correlation 
with field greenness.   At anthesis correlation coefficient 
of NDVI with the interaction between leaf area and chlo-
rophyll content was not significant with yield. Ma et al. 
(1996) summarized that reflectance measurements took 
prior to anthesis predict grain yield and may provide in-
season indications of N deficiency. 
Gitelson et al. (1996) pointed out that in some condi-
tions, as variation in leaf chlorophyll concentration, 
GNDVI is more sensitive than NDVI. In particular is the 
green band, used in the computing GNDVI that is more 
sensitive than the red band used in NDVI. This changes 
occurs when some biophysical parameters as LAI or leaf 
chlorophyll concentration reach moderate to high values. 
Fertility levels, water stress and temperature can affect 
the rate of senescence during maturation of crops. In par-
ticular Adamsen et al. (1999) used three different meth-
ods to measure greenness during senescence on spring 
wheat (Triticum aestivum L.): digital camera, SPAD, 
hand-held radiometer.  They derived G/R (green to red) 
from digital camera, NDVI from an hand-held radiome-
ter and SPAD readings was obtained from randomly se-
lected flag leaves. All three methods showed the similar 
temporal behaviour. Relationship between G/R and 
NDVI showed significant coefficient of determination 
and their relationship were described by a third order 
polynomial equation (R2 = 0.96; P < 0.001). Relation is 
linear until  G/R > 1, when canopy approach to maturity 
(G/R < 1) NDVI is still sensitive to the continued decline 
in senescence than did G/R. This fact suggest that the use 
of the visible band is limited in such conditions. How-
ever authors found that G/R is more sensitive than SPAD 
measurements. 
Daughtry et al. (2000) have studied the wavelengths sen-
sitive to leaf chlorophyll concentration in Maize (Zea 
mays L.). VIs as NIR/Red, NDVI, SAVI and OSAVI, 
have shown LAI  as the main variable, accounting for > 

98% of the variation. Chlorophyll, LAI, and their inter-
action accounted for > 93% of the variation in indices 
that compute the green band. Background effect ac-
counted for less than 1% of the variation of each index , 
except for GNDVI, which was 2.5%. 
Serrano et al. (2000) studied the relationship between 
VIs and canopy variables (aboveground biomass, LAI 
canopy chlorophyll A content and the fraction of inter-
cepted photosynthetic active radiation (fIPAR) for a 
wheat  crop growing under different N supplies. The 
VIs-LAI relationships varied among N treatments. The 
authors also showed that VI were robust indicators of 
fIPAR independently of N treatments and phenology.  
Li et al. (2001) studied spectral and agronomic responses 
to irrigation and N fertilization on cotton (Gossypium 
hirsutum L.) to determine simple and cross correlation 
among cotton reflectance, plant growth, N uptake, lint 
yield, site elevation, soil water and texuture.  NIR reflec-
tance was positively correlated with plant growth, N up-
take. Red and middle-infrared reflectance increased with 
site elevation. Li et al. (2001) found that soil in depres-
sion areas contains more sand on the surface than on up-
slope areas. This behaviour modified reflectance pat-
terns. As a result, a dependence on sand content was 
shown by NDVI with higher values in the depression ar-
eas and lower values in areas where the soil had more 
clay. In addition cotton NIR reflectance, NDVI, soil wa-
ter, N uptake and lint yield were significantly affected by 
irrigation (P < 0.0012). The N treatment had no effect on 
spectral parameters, and interaction between irrigation 
and N fertilizer was significant on NIR reflectance ( P < 
0.0027). Red and NIR reflectance and NDVI were cross-
correlated with soil water, sand, clay and site elevation 
across a distance of 60 to 80 meters. Cross-correlation 
analysis of spectral reflectance, soil texture and site ele-
vation could be useful for an in-season adjustment in wa-
ter and N fertilizer application. Moreover authors pointed 
out on the possibility to use cross-correlation distance 
between NDVI and site elevation as a distance of vari-
able N application over heterogeneous fields. 
Wright (2003) investigated the spectral signatures of 
wheat under different N rates, and the response to a mid-
season application at heading. VIs were computed (RVI, 
NDVI, DVI, GNDVI) and spectral data were compared 
with pre-anthesis tissue samples and post-harvest grain 
quality. The author found that imagery and tissue sam-
ples were significantly correlated with pre-anthesis tissue 
samples and post-harvest grain quality. The second ap-
plication of N at heading improved protein only margin-
ally. GNDVI was significantly correlated with nitrogen 
content of plants. VIs used in the study, whether from 
satellite or aircraft correlated well with preseason N and 
plant tissue analysis, but had lower correlation with pro-
tein.  
Osborne et al. (2002a; 2002b) demonstrated that hyper-
spectral data in distinguishing difference in N and P at 
the leaf and canopy level, but the relationship were not 
constant over all plant growth stages.  Adams et al. 
(2000) have detected  Fe, Mn, Zn and Cu deficiency in 
soybean using hyperspectral reflectance techniques and 
proposing a Yellowness Index (Adam et al., 1999) that 
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evaluated leaf chlorosis based on the shape of the reflec-
tance spectrum between 570 nm and 670 nm.    
 
Pest Management 
 
Remote sensing has also shown great potential for detec-
ting and identifying crop diseases (Hatfield and Pinter, 
1993) and weeds. Visible and NIR bands can be useful 
for detecting healthy plants versus infected plants becau-
se diseased plant react with changes in LAI, or canopy 
structure. Malthus and Madeira (1993) using hyperspec-
tral information in visible and NIR bands, were able to 
detect changes in remotely sensed reflectance before di-
sease symptoms were visible to the human eye. 
 
Weed management represent an important agronomic 
practice to growers. Weeds compete for water, nutrient, 
light and often reduce crop yield and quality. Decisions 
concerning their control must be made early in the crop 
growth cycle. Inappropriate herbicide application can 
also have the undesirable effect on the environment and 
a side effect to the crop. With the advent of precision a-
griculture, there has been a chance from uniform applica-
tion to the adoption of herbice-ready crop and to apply 
herbicide only when and where needed. This kind of ap-
proach is economically efficient and environmentally 
sound but site-specific herbicide management requires 
spatial information on the weeds. The discrimination be-
tween crops and weeds is usually accomplished based on 
the differences in the visible/NIR spectral signatures of 
crops and specific weeds (Gausman et al., 1981; Brown 
et al., 1994) or by acquiring images when weed coloring 
is particularly distinctive. Richardson et al. (1985) de-
monstrated that multispectral aerial video images could 
be used to distinguish uniform plot of Johnsongrass and 
pigweed from sorghum, cotton and cantaloupe plots. Se-
veral other authors have utilized spectral imagery to se-
parate crops from weeds based on spectral signatures of 
species and bare soil (Hanks and Beck, 1998) or based 
on the leaf shape determine by the machine vision te-
chnology (Franz et al., 1995; Tian et al., 1999). 
Basso et al. 2004 (unpublished data) used the handheld 
radiometer CropScan to determine if a wheat field with 
various level of pappy (Papever Rhoeas) infestation 
could be detected by the multispectral radiometer . The 
study showed that the reflectance in the Red and NIR of 
the highly infested areas with pappy of the durum wheat 
field was significantly different from the no infestations 
of lower levels of weed presence (Figure 5).  
Remote sensing can also be used to determine herbicide 
injury to the crop for insurance purposes (Hickman et al., 
1991; Donald, 1998a, Donald 1999b).  To improve ap-
plication efficiency of herbicides, Sudduth and Hummel 
(1993) developed a portable NIR spectrophotometer for 
use in estimating soil organic matter as part of the esti-
mation procedure for the amount of herbicide to be spra-
yed.  
Several studies have also been carried out using remote 
sensing for identifying and managing insects, mite and 
nematode populations. Such studies have been able to 
demonstrate that remote sensing is able to detect actual 

changes in plant pigments caused by pest presence, da-
mages by pest and to identify areas susceptible to infe-
station. Riedell and Blackmer (1999) infested wheat see-
dlings with aphids and after 3 weeks they measured the 
reflectance properties of individual leaves. The leaves of 
the infected plants had lower chlorophyll concentration 
and displayed significant changes in reflectance spectra 
at certain wavelengths (500 to 525, 625 to 635 and 680 
to 695 nm). This study in combination with others (Cook 
et al., 1999; Elliot et al., 1999; Willers et al., 1999) sug-
gests the potential usefulness of canopy spectra for iden-
tifying outbreaks in actual field situations and to guide 
field scouts to specific areas for directed sampling. Site 
specific pesticide application can reduce the impact of 
toxic chemicals on the environment by 40 percent (Du-
pont et al., 2000). 
Roots may sense difficult condition in the soil and thence 
send inhibitory signals to the shoots which harden the 
plants against the consequences of a deteriorating or re-
striction environment, especially if the water supply is at 
risk. TIR can provide early, sometimes previsual, 
detection of diseases that interfere with flow of water 
from the soil through the plant to the atmosphere.  Pinter 
et al (1979) found that a cotton plant whose roots were 
infected with the soil-borne fungus Pythium displayed 
sunlit leaf temperature that were 3 to 5° C warmer than 
adjacent healthy plants. TIR was also used for detecting 
root diseases in red clover under irrigated conditions (O-
liva et al., 1994).  
 
Plant Population 
 
Plant population is an important variable that influences 
the final yield (Ritchie and Wei, 2000). Plant stands are 
affected by soil parameters, weather, field slope, aspect, 
seedling diseases, tillage etc.  Remote sensing imagery 
taken after emergence at the proper spatial resolutions 
can be used to determine plant populations. Basso et al. 
(2001) through NDVI were able to identify 3 
management zones were plant population of soybean 
was highly different due to the different position in the 
landscape.  Moran et al. (2003) stated that development 
of new sensitive sensors that remove soil background is 
on the way and accurate assessment of plant density 
should improve. 
 
Selection of growth traits 
The use of morphological and physiological traits as in-
direct selection criteria for grain yield is an alternative to 
breeding approach. Future wheat yield improvements 
may be gained by increasing total dry matter production 
(TDM). VIs have been proposed as an appropriate and 
nondestructive method to assess total dry matter and 
LAI. Aparacio et al., (2000) and (2002) investigated 
whether VIs could accurately identify TDM and LAI in 
durum wheat and serve as indirect selection criteria in 
breeding programs. They found that the best growth sta-
ges for growth traits appraisal were stages 65 and 75 of 
the Zadock scale. VIs accurately tracked changes in LAI 
when data were analyzed across a broad range of diffe-
rent growth stages, environment and genotypes. Since 
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VIs lack of predictive ability for specific environ-
ment/growth stages combinations, their value as indirect 
genotypes selection criteria for TDM or LAI was limited. 
Ma et al., (2001) showed that canopy reflectance measu-
red between R4 and R5 stages in soybean adequately di-
scriminates high from low yielding genotypes and provi-
ding a reliable and fast indicator for screening and 
ranking soybean genotypes based on the relationship be-
tween NDVI and grain yield.  
 
Yield Estimation 
 
Remote sensing can provide valuable information of 
yield assessment and show spatial variation across the 
field. There are two approaches for yield estimation, the 
first is a direct method in which predicitions are derived 
directly from remote sensing measurements (Figure 6). 
The second method is an indirect one, where remotely 
sensed data are incorporated into simulation model for 
crop growth and development either as within season ca-
libration checks of model output (LAI, biomass) or in a 
feedback loop used to adjust model starting conditions  
(Maas, 1988).  
The direct method for prediction yield using remote sen-
sing can be based on reflectance or thermal-based. Both 
methods have been applied with case of successes on va-
rious crops like corn, soybean, wheat, alfalfa (Tucker et 
al, 1979; Tucker et al., 1981; Idso et al., 1977; Pinter et 
al., 1981). Hatfield (1981) in his survey of 82 different 
varieties of wheat was not able to find a consistent rela-
tionship between spectral indices and yield. 
Hatfield (1983b) coupled frequent spectral reflectance 
and thermal observation in a more physiological method 
to predict yields in wheat and sorghum. This method re-
quires TIR daily measurements during grain filling pe-
riod to estimate crop stress.   
Shanahan et al. (2001) demonstrated that the time of 
corn pollination was not a good growth stage to estimate 
yield because of the various that can cause tassel emer-
gence dates to vary.  Yang et al. (2000) found similar 
results, concluding that images from images taken at 
grain filling can provide good relationships between VIs 
and yield. Reliability of imagery for use in yield estima-
tion decreases as the time before harvest increases be-
cause there is more opportunities for factors like various 
nature of stresses to influence yield.  
Aase and Siddoway (1981) had cautioned that the rela-
tionships of spectral indices to yield were depedent upon 
normal grain-filling conditions for the crop. Similar re-
sults were found by Basso et al. (2004) (personal com-
munication, unpublished data) where the NDVI images 
on a rainfed durum wheat field showed different correla-
tion to yield depending on the time of the image selected 
(Fig.7). In this specific case, spatial variability of soil 
texture and soil water uptake by plants affected by 
drought varied at anthesis presenting different scenarios 
from the one predicted by the NDVI estimation.   
 
 
 
 

Combining remote sensing  
with crop modeling  
 
Crop models provide the ability to simulate different 
management options under different weather conditions, 
while remote sensing allows for identification of spatial 
patterns. Remote sensing data can directly be used for 
within season model calibration (Maas, 1993), model va-
lidation (Fisher, 1994). Once information on stable and 
dynamic variable are collected, remote sensing in com-
bination with crop growth model can be used to quantify 
the spatial and temporal crop variability (Fig. 7 pag. 48). 
Clearly, the goal of crop simulation is to explain the spa-
tial variability of crop performance mapped with grain 
yield monitoring systems and to help guide in 
management decisions related to the site-specific 
management of crop inputs. It is also clear that crop si-
mulations cannot be performed everywhere given that 
the cost and the availability of detailed inputs would be 
prohibitive. A more balanced approach to spatial applica-
tion of crop simulation models would be to delineate zo-
nes within the field representing areas of similar crop 
performance. One approach may be to obtain vegetation 
indexes derived from remote sensed imagery during cri-
tical times during the growing season, classify the ima-
ges for target sampling, delineate spatial patterns and use 
the results of the target sampling as inputs for the mo-
dels. Model validation can be then be performed at selec-
ted sites within these delineated management zones.  
Such an approach would facilitate the challenge of using 
crop models in precision farming by obtaining spatial 
inputs to simulate variations of crop yields across the 
field, as well as to decide where to use field averages for 
some factors along with spatially variable inputs for o-
thers. Basso et al. (2001) conducted a study to examine a 
new procedure for spatial validation of crop models for 
use in precision farming. This procedure used the CRO-
PGRO-Soybean model to validate management zones 
across the field that were delineated using a NDVI clas-
sification procedure. Airborne false color composite i-
mages in the blue, red, green and NIR portion of the 
spectrum were taken at selected time during the season at 
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Fig. 6 – Correlation between NDVI derived from an image 

taken at flowering and yield for a soybean crop in Mi-
chigan USA. 

Fig. 6 – Correlazione tra NDVI in fioritura e produzione per 
una coltura di soia nello stato del Michigan, USA 
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1 meter pixel resolution. The images provided spatial in-
formation about the condition of the crop throughout the 
season. Each image was used to generate NDVI maps of 
the field and to identify spatial patterns across the field. 
The false color composite image taken on July 18 was 
selected for quantifying areas with similar reflectance by 
grouping areas into classes of similar NDVI values using 
supervised classification technique. Pixels of similar re-
flectance were queried across the field after trying va-
rious ranges of values able to reproduce the spatial pat-
terns visible in the original false-color composite image. 
The reclassified NDVI map from 18 July image clearly 
showed spatial variability in soybean performance. Clas-
sification of the NDVI image indicated three classes of 
importance in this field.  The model performance indica-
ted that the NDVI reclassification procedure was appro-
priate and with multi-year simulation should allow for 
the characterization of management zones for this field. 
The use of site specific model inputs obtained with the 
NDVI-reclassification procedure has a major advantage 
since the power and application of simulation models in 
precision farming has been limited by data requirements 
at the sub-field scale. The site-specific inputs approach is 
scale-independent because the scale is controlled by the 
observed variation in the field and that is the scale at 
which the model is applied. 
 
 
Future challenges and Opportunities 
 
VIs are often used as synonymous of plant vigour. This 
is not necessarily correct because broad wave band VIs 
do not have the capability for identifying the factor re-
sponsible for a specific type of stress.  Narrow band in-
dices such as the Photochemical Reflectance Index 
(PRI), Water Band Index (WBI), and the Normalized 
Pigment Chlorophyll Ratio Index (NPCI) are examples 
of reflectance indices correlated with physiological 
stresses such as nutrient and water deficts (Penuelas et al, 
1994). A step forward was taken by the Environmental 
and Plant Dynamic Unit of Soil and Water Conservation 
Laboratory of the USDA-ARS in Phoenix Az, with the 
work conducted by Clarke et al., (2001), Pinter et al., 
(2003) Moran et al., (2003) on the Canopy Chlorophyll 
Content Index (CCCI) based on a VI plus the reflectance 
in a narrow red edge band (~720 nm) to distinguish nu-
trient stress from other causes of reduced green biomass 
in cotton. 
Yield monitor and remote sensing images at harvest 
should display similar pattern but in many cases due to 
errors in yield monitor system this match does not occur. 
Shanahan et al. (2001) and Pinter et al. (2003) suggested 
that VIs can be used as an alternative to yield monitor 
systems. New ideas for commercialization are the com-
binations of pre-harvest remote sensing image and yield 
map to display the actual and realistic spatial variability 
of yield across the field.  
A major research challenge is to develop stress detection 
algorithms that are universal and perfom well over space, 
throughout the seasons and between years.  Remote sen-
sing technology will improve as spatial, spectral and 

temporal resolution imagery will increase. Remote sen-
sing application in precision agriculture can be direct, 
but most likely, is indirect. Rapid response is required to 
provide information about the condition of the current 
crop in time to make management input corrections to 
accomplish maximum yield. Images only show the spa-
tial variability of plant condition, thus suggestions can 
only be made if the causes of the variability are under-
stood. The current limitation for image-based applica-
tions is due to sensors attributes. Crop spatial variability 
is usually observed at a scale that only is too fine for the 
sensors currently available on the orbiting satellites. Air-
borne images are already limiting this problem but the 
temporal and spectral aspects still need to be improved. 
The success of remote sensing in agriculture will be me-
asured by the type of information that is provided to the 
farmer, how quickly the information is delivered and the 
fee that is charged for the information. Because the po-
tential market for remote sensing is great, competition in 
farming business should help make the success a reality.  
The future brings tremendous prospects for remote sen-
sing applications especially if integrated with crop simu-
lation models.     
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 Fig. 2 - Example of false color composite images of a corn crop 

in Michigan USA. 
Fig. 2 – Esempio di immagini a colori falsi composti di un campo 

di mais nello stato del   Michigan USA 
 
 

 

 

 
 

 
 

 
Fig. 4 – Spectral reflectance envelopes for deciduous (broad-

leaved) and coniferous (needle-bearing) trees (Adopted by 
Kalensky and Wilson, 1975). 

Fig.4 – Curva di riflettanza spettrale di alberi cedui (a foglia 
larga) e conifere (ad aghi). (Da Kalensky e Wilson, 1975) 
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Fig. 7 – Examples of a NDVI map of a durum wheat crop in Puglia, Italy, to illustrate spatial variability within the field as affec-

ted by landscape position and soil properties. 
Fig. 7 – Esempio di una mappa di NDVI di frumento duro per illustrare la variabilità spaziale in funzione della topografia e pro-

prietà del suolo.   




